3QF7

The Mre11:Rad50 complex forms an ATP dependent molecular clamp in DNA double-strand break repair


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.9 Å
  • R-Value Free: 0.191 
  • R-Value Work: 0.157 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

The Mre11:Rad50 Structure Shows an ATP-Dependent Molecular Clamp in DNA Double-Strand Break Repair.

Lammens, K.Bemeleit, D.J.Moeckel, C.Clausing, E.Schele, A.Hartung, S.Schiller, C.B.Lucas, M.Angermueller, C.Soeding, J.Straesser, K.Hopfner, K.P.

(2011) Cell 145: 54-66

  • DOI: 10.1016/j.cell.2011.02.038
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The MR (Mre11 nuclease and Rad50 ABC ATPase) complex is an evolutionarily conserved sensor for DNA double-strand breaks, highly genotoxic lesions linked to cancer development. MR can recognize and process DNA ends even if they are blocked and misfold ...

    The MR (Mre11 nuclease and Rad50 ABC ATPase) complex is an evolutionarily conserved sensor for DNA double-strand breaks, highly genotoxic lesions linked to cancer development. MR can recognize and process DNA ends even if they are blocked and misfolded. To reveal its mechanism, we determined the crystal structure of the catalytic head of Thermotoga maritima MR and analyzed ATP-dependent conformational changes. MR adopts an open form with a central Mre11 nuclease dimer and two peripheral Rad50 molecules, a form suited for sensing obstructed breaks. The Mre11 C-terminal helix-loop-helix domain binds Rad50 and attaches flexibly to the nuclease domain, enabling large conformational changes. ATP binding to the two Rad50 subunits induces a rotation of the Mre11 helix-loop-helix and Rad50 coiled-coil domains, creating a clamp conformation with increased DNA-binding activity. The results suggest that MR is an ATP-controlled transient molecular clamp at DNA double-strand breaks.


    Organizational Affiliation

    Center for Integrated Protein Science Munich, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Rad50
A, B
365Thermotoga maritima (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099)Mutation(s): 0 
Gene Names: rad50
Find proteins for Q9X1X1 (Thermotoga maritima (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099))
Go to UniProtKB:  Q9X1X1
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Mre11
D, C
50Thermotoga maritima (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099)Mutation(s): 0 
Gene Names: sbcD
Find proteins for Q9X1X0 (Thermotoga maritima (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099))
Go to UniProtKB:  Q9X1X0
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ANP
Query on ANP

Download SDF File 
Download CCD File 
A, B
PHOSPHOAMINOPHOSPHONIC ACID-ADENYLATE ESTER
C10 H17 N6 O12 P3
PVKSNHVPLWYQGJ-KQYNXXCUSA-N
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A, B
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.9 Å
  • R-Value Free: 0.191 
  • R-Value Work: 0.157 
  • Space Group: P 1
Unit Cell:
Length (Å)Angle (°)
a = 49.149α = 98.64
b = 68.400β = 111.14
c = 71.111γ = 92.03
Software Package:
Software NamePurpose
PHENIXrefinement
PHASERphasing
MxCuBEdata collection
XDSdata reduction
XDSdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2011-04-20
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance
  • Version 1.2: 2017-07-26
    Type: Advisory, Data collection, Refinement description, Source and taxonomy