3LZM

STRUCTURAL STUDIES OF MUTANTS OF T4 LYSOZYME THAT ALTER HYDROPHOBIC STABILIZATION


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Structural studies of mutants of T4 lysozyme that alter hydrophobic stabilization.

Matsumura, M.Wozniak, J.A.Sun, D.P.Matthews, B.W.

(1989) J.Biol.Chem. 264: 16059-16066


  • PubMed Abstract: 
  • Multiple replacements at amino acid position 3 of bacteriophage T4 lysozyme have shown that the conformational stability of the protein is directly governed by the hydrophobicity of the residue substituted (Matsumura, M., Becktel, W. J., and Matthews ...

    Multiple replacements at amino acid position 3 of bacteriophage T4 lysozyme have shown that the conformational stability of the protein is directly governed by the hydrophobicity of the residue substituted (Matsumura, M., Becktel, W. J., and Matthews, B. W. (1988) Nature 334, 406-410). Of the 13 mutant lysozymes made by site-directed mutagenesis, two variants, one with valine (I3V) and the other with tyrosine (I3Y), were crystallized and their structures solved. In this report we describe the crystal structures of these variants at 1.7 A resolution. While the structure of the I3V mutant is essentially the same as that of wild-type lysozyme, the I3Y mutant has substantial changes in its structure. The most significant of these are that the side chain of the tyrosine is not accommodated within the interior of the protein and the amino-terminal polypeptide (residues 1-9) moves 0.6-1.1 A relative to the wild-type structure. Using coordinates based on the wild-type and available mutant structures, solvent accessible surface area of residue 3 as well as the adjacent 9 residues in the folded form were calculated. The free energy of stabilization based on the transfer of these residues from a fully extended form to the interior to the folded protein was found to correlate well with the protein stability determined by thermodynamic analysis. The enhanced thermostability of the variant Ile-3----Leu, relative to wild-type lysozyme, can also be rationalized by surface-area calculations based on a model-built structure. Noncrystallization of most lysozyme variants at position 3 appears to be due to disruption of intermolecular contacts in the crystal. The Ile-3----Val variant is closely isomorphous with wild-type and maintains the same crystal contacts. In the Ile-3----Tyr variant, however, a new set of contacts is made in which direct protein-protein hydrogen bonds are replaced by protein-water-protein hydrogen bonds as well as a novel hydrogen bond involving the phenolic hydroxyl of the substituted tyrosine.


    Related Citations: 
    • Replacements of Pro86 in Phage T4 Lysozyme Extend an Alpha-Helix But Do not Alter Protein Stability
      Alber, T.,Bell, J.A.,Dao-Pin, S.,Nicholson, H.,Cook, J.A.Wozniak S.,Matthews, B.W.
      (1988) Science 239: 631
    • Structure of Bacteriophage T4 Lysozyme Refined at 1.7 Angstroms Resolution
      Weaver, L.H.,Matthews, B.W.
      (1987) J.Mol.Biol. 193: 189
    • Atomic Coordinates for T4 Phage Lysozyme
      Remington, S.J.,Teneyck, L.F.,Matthews, B.W.
      (1977) Biochem.Biophys.Res.Commun. 75: 265
    • Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme
      Matthews, B.W.
      (1975) Biochim.Biophys.Acta 405: 442
    • Contributions of Hydrogen Bonds of Thr 157 to the Thermodynamic Stability of Phage T4 Lysozyme
      Alber, T.,Dao-Pin, S.,Wilson, K.,Wozniak, J.A.,Cook, S.P.,Matthews, B.W.
      (1987) Nature 330: 41
    • Crystallographic Data for Lysozyme from Bacteriophage T4
      Matthews, B.W.,Dahlquist, F.W.,Maynard, A.Y.
      (1973) J.Mol.Biol. 78: 575
    • Enhanced Protein Thermostability from Site-Directed Mutations that Decrease the Entropy of Unfolding
      Matthews, B.W.,Nicholson, H.,Becktel, W.J.
      (1987) Proc.Natl.Acad.Sci.USA 84: 6663
    • Crystallographic Determination of the Mode of Binding of Oligosaccharides to T4 Bacteriophage Lysozyme. Implications for the Mechanism of Catalysis
      Anderson, W.F.,Gruetter, M.G.,Remington, S.J.,Weaver, L.H.,Matthews, B.W.
      (1981) J.Mol.Biol. 147: 523
    • The Three Dimensional Structure of the Lysozyme from Bacteriophage T4
      Matthews, B.W.,Remington, S.J.
      (1974) Proc.Natl.Acad.Sci.USA 71: 4178
    • High-Resolution Structure of the Temperature-Sensitive Mutant of Phage Lysozyme, Arg 96 (Right Arrow) His
      Weaver, L.H.,Gray, T.M.,Gruetter, M.G.,Anderson, D.E.,Wozniak, J.A.,Dahlquist, F.W.,Matthews, B.W.
      (1989) Biochemistry 28: 3793
    • Enhanced Protein Thermostability from Designed Mutations that Interact with Alpha-Helix Dipoles
      Nicholson, H.,Becktel, W.J.,Matthews, B.W.
      (1988) Nature 336: 651
    • Common Precursor of Lysozymes of Hen Egg-White and Bacteriophage T4
      Matthews, B.W.,Gruetter, M.G.,Anderson, W.F.,Remington, S.J.
      (1981) Nature 290: 334
    • Structural Studies of Mutants of the Lysozyme of Bacteriophage T4. The Temperature-Sensitive Mutant Protein Thr157 (Right Arrow) Ile
      Gruetter, M.G.,Gray, T.M.,Weaver, L.H.,Alber, T.,Wilson, K.,Matthews, B.W.
      (1987) J.Mol.Biol. 197: 315
    • Contributions of Left-Handed Helical Residues to the Structure and Stability of Bacteriophage T4 Lysozyme
      Nicholson, H.,Soderlind, E.,Tronrud, D.E.,Matthews, B.W.
      (1989) J.Mol.Biol. 210: 181
    • Relation between Hen Egg White Lysozyme and Bacteriophage T4 Lysozyme. Evolutionary Implications
      Matthews, B.W.,Remington, S.J.,Gruetter, M.G.,Anderson, W.F.
      (1981) J.Mol.Biol. 147: 545
    • Structure of the Lysozyme from Bacteriophage T4, an Electron Density Map at 2.4 Angstroms Resolution
      Remington, S.J.,Anderson, W.F.,Owen, J.,Teneyck, L.F.,Grainger, C.T.,Matthews, B.W.
      (1978) J.Mol.Biol. 118: 81
    • Structural Analysis of the Temperature-Sensitive Mutant of Bacteriophage T4 Lysozyme, Glycine 156 (Right Arrow) Aspartic Acid
      Gray, T.M.,Matthews, B.W.
      (1987) J.Biol.Chem. 262: 16858
    • Hydrophobic Stabilization in T4 Lysozyme Determined Directly by Multiple Substitutions of Ile 3
      Matsumura, M.,Becktel, W.J.,Matthews, B.W.
      (1988) Nature 334: 406
    • Temperature-Sensitive Mutations of Bacteriophage T4 Lysozyme Occur at Sites with Low Mobility and Low Solvent Accessibility in the Folded Protein
      Alber, T.,Dao-Pin, S.,Nye, J.A.,Muchmore, D.C.,Matthews, B.W.
      (1987) Biochemistry 26: 3754


    Organizational Affiliation

    Institute of Molecular Biology, University of Oregon, Eugene 97403.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
T4 LYSOZYME
A
164Enterobacteria phage T4Gene Names: E
EC: 3.2.1.17
Find proteins for P00720 (Enterobacteria phage T4)
Go to UniProtKB:  P00720
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • Space Group: P 32 2 1
Unit Cell:
Length (Å)Angle (°)
a = 61.200α = 90.00
b = 61.200β = 90.00
c = 96.800γ = 120.00
Software Package:
Software NamePurpose
TNTrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1990-01-15
    Type: Initial release
  • Version 1.1: 2008-03-25
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Advisory, Version format compliance
  • Version 1.3: 2017-11-29
    Type: Derived calculations, Other