3LTQ

Structure of Interleukin 1B solved by SAD using an inserted Lanthanide Binding Tag


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.1 Å
  • R-Value Free: 0.221 
  • R-Value Work: 0.192 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Engineering encodable lanthanide-binding tags into loop regions of proteins.

Barthelmes, K.Reynolds, A.M.Peisach, E.Jonker, H.R.DeNunzio, N.J.Allen, K.N.Imperiali, B.Schwalbe, H.

(2011) J.Am.Chem.Soc. 133: 808-819

  • DOI: 10.1021/ja104983t
  • Primary Citation of Related Structures:  3POK

  • PubMed Abstract: 
  • Lanthanide-binding tags (LBTs) are valuable tools for investigation of protein structure, function, and dynamics by NMR spectroscopy, X-ray crystallography, and luminescence studies. We have inserted LBTs into three different loop positions (denoted ...

    Lanthanide-binding tags (LBTs) are valuable tools for investigation of protein structure, function, and dynamics by NMR spectroscopy, X-ray crystallography, and luminescence studies. We have inserted LBTs into three different loop positions (denoted L, R, and S) of the model protein interleukin-1β (IL1β) and varied the length of the spacer between the LBT and the protein (denoted 1−3). Luminescence studies demonstrate that all nine constructs bind Tb3+ tightly in the low nanomolar range. No significant change in the fusion protein occurs from insertion of the LBT, as shown by two X-ray crystallographic structures of the IL1β-S1 and IL1β-L3 constructs and for the remaining constructs by comparing the 1H−15N heteronuclear single-quantum coherence NMR spectra with that of the wild-type IL1β. Additionally, binding of LBT-loop IL1β proteins to their native binding partner in vitro remains unaltered. X-ray crystallographic phasing was successful using only the signal from the bound lanthanide. Large residual dipolar couplings (RDCs) could be determined by NMR spectroscopy for all LBT-loop constructs and revealed that the LBT-2 series were rigidly incorporated into the interleukin-1β structure. The paramagnetic NMR spectra of loop-LBT mutant IL1β-R2 were assigned and the Δχ tensor components were calculated on the basis of RDCs and pseudocontact shifts. A structural model of the IL1β-R2 construct was calculated using the paramagnetic restraints. The current data provide support that encodable LBTs serve as versatile biophysical tags when inserted into loop regions of proteins of known structure or predicted via homology modeling.


    Related Citations: 
    • Double-Lanthanide-Binding Tags for Macromolecular Crystallographic Structure Determination
      Silvaggi, N.R.,Martin, L.J.,Schwalbe, H.,Imperiali, B.,Allen, K.N.
      (2007) J.Am.Chem.Soc. 129: 7114


    Organizational Affiliation

    Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University of Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Interleukin-1 beta
A
171Homo sapiensGene Names: IL1B (IL1F2)
Find proteins for P01584 (Homo sapiens)
Go to Gene View: IL1B
Go to UniProtKB:  P01584
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
TB
Query on TB

Download SDF File 
Download CCD File 
A
TERBIUM(III) ION
Tb
HKCRVXUAKWXBLE-UHFFFAOYSA-N
 Ligand Interaction
SO4
Query on SO4

Download SDF File 
Download CCD File 
A
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
ACT
Query on ACT

Download SDF File 
Download CCD File 
A
ACETATE ION
C2 H3 O2
QTBSBXVTEAMEQO-UHFFFAOYSA-M
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.1 Å
  • R-Value Free: 0.221 
  • R-Value Work: 0.192 
  • Space Group: P 63 2 2
Unit Cell:
Length (Å)Angle (°)
a = 120.584α = 90.00
b = 120.584β = 90.00
c = 74.899γ = 120.00
Software Package:
Software NamePurpose
CBASSdata collection
RESOLVEphasing
DENZOdata reduction
PHENIXrefinement
SCALEPACKdata scaling
PHASERphasing
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2011-02-16
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance
  • Version 1.2: 2017-11-01
    Type: Refinement description