3J6H

Nucleotide-free Kinesin motor domain complexed with GMPCPP-microtubule


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 8.1 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation 3D Report Full Report


This is version 1.0 of the entry. See complete history

Literature

X-ray and Cryo-EM structures reveal mutual conformational changes of Kinesin and GTP-state microtubules upon binding

Morikawa, M.Yajima, H.Nitta, R.Inoue, S.Ogura, T.Sato, C.Hirokawa, N.

(2015) Embo J. --: --

  • DOI: 10.15252/embj.201490588
  • Primary Citation of Related Structures:  3WRD, 3X2T

  • PubMed Abstract: 
  • The molecular motor kinesin moves along microtubules using energy from ATP hydrolysis in an initial step coupled with ADP release. In neurons, kinesin-1/KIF5C preferentially binds to the GTP-state microtubules over GDP-state microtubules to selective ...

    The molecular motor kinesin moves along microtubules using energy from ATP hydrolysis in an initial step coupled with ADP release. In neurons, kinesin-1/KIF5C preferentially binds to the GTP-state microtubules over GDP-state microtubules to selectively enter an axon among many processes; however, because the atomic structure of nucleotide-free KIF5C is unavailable, its molecular mechanism remains unresolved. Here, the crystal structure of nucleotide-free KIF5C and the cryo-electron microscopic structure of nucleotide-free KIF5C complexed with the GTP-state microtubule are presented. The structures illustrate mutual conformational changes induced by interaction between the GTP-state microtubule and KIF5C. KIF5C acquires the 'rigor conformation', where mobile switches I and II are stabilized through L11 and the initial portion of the neck-linker, facilitating effective ADP release and the weak-to-strong transition of KIF5C microtubule affinity. Conformational changes to tubulin strengthen the longitudinal contacts of the GTP-state microtubule in a similar manner to GDP-taxol microtubules. These results and functional analyses provide the molecular mechanism of the preferential binding of KIF5C to GTP-state microtubules.


    Organizational Affiliation

    Department of Cell Biology and Anatomy, The University of Tokyo, Hongo Tokyo, Japan Department of Molecular Structure and Dynamics, Graduate School of Medicine, The University of Tokyo, Hongo Tokyo, Japan.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Tubulin alpha-1A chain
A
436Sus scrofaGene Names: TUBA1A
Find proteins for P02550 (Sus scrofa)
Go to Gene View: TUBA1A
Go to UniProtKB:  P02550
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Tubulin beta chain
B
426Sus scrofaN/A
Find proteins for P02554 (Sus scrofa)
Go to UniProtKB:  P02554
Entity ID: 3
MoleculeChainsSequence LengthOrganismDetails
Kinesin heavy chain isoform 5C
K
352Mus musculusGene Names: Kif5c (Nkhc2)
Find proteins for P28738 (Mus musculus)
Go to UniProtKB:  P28738
Small Molecules
Ligands 4 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download SDF File 
Download CCD File 
K
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
GTP
Query on GTP

Download SDF File 
Download CCD File 
A
GUANOSINE-5'-TRIPHOSPHATE
C10 H16 N5 O14 P3
XKMLYUALXHKNFT-UUOKFMHZSA-N
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A, B
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
G2P
Query on G2P

Download SDF File 
Download CCD File 
B
PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER
C11 H18 N5 O13 P3
GXTIEXDFEKYVGY-KQYNXXCUSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 8.1 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2015-04-01
    Type: Initial release