3J0J

Fitted atomic models of Thermus thermophilus V-ATPase subunits into cryo-EM map


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 9.70 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase.

Lau, W.C.Rubinstein, J.L.

(2012) Nature 481: 214-218

  • DOI: https://doi.org/10.1038/nature10699
  • Primary Citation of Related Structures:  
    3J0J

  • PubMed Abstract: 

    Ion-translocating rotary ATPases serve either as ATP synthases, using energy from a transmembrane ion motive force to create the cell's supply of ATP, or as transmembrane ion pumps that are powered by ATP hydrolysis. The members of this family of enzymes each contain two rotary motors: one that couples ion translocation to rotation and one that couples rotation to ATP synthesis or hydrolysis. During ATP synthesis, ion translocation through the membrane-bound region of the complex causes rotation of a central rotor that drives conformational changes and ATP synthesis in the catalytic region of the complex. There are no structural models available for the intact membrane region of any ion-translocating rotary ATPase. Here we present a 9.7 Å resolution map of the H(+)-driven ATP synthase from Thermus thermophilus obtained by electron cryomicroscopy of single particles in ice. The 600-kilodalton complex has an overall subunit composition of A(3)B(3)CDE(2)FG(2)IL(12). The membrane-bound motor consists of a ring of L subunits and the carboxy-terminal region of subunit I, which are equivalent to the c and a subunits of most other rotary ATPases, respectively. The map shows that the ring contains 12 L subunits and that the I subunit has eight transmembrane helices. The L(12) ring and I subunit have a surprisingly small contact area in the middle of the membrane, with helices from the I subunit making contacts with two different L subunits. The transmembrane helices of subunit I form bundles that could serve as half-channels across the membrane, with the first half-channel conducting protons from the periplasm to the L(12) ring and the second half-channel conducting protons from the L(12) ring to the cytoplasm. This structure therefore suggests the mechanism by which a transmembrane proton motive force is converted to rotation in rotary ATPases.


  • Organizational Affiliation

    Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
V-type ATP synthase alpha chain
A, B, C
578Thermus thermophilus HB8Mutation(s): 0 
EC: 3.6.3.14
UniProt
Find proteins for Q56403 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore Q56403 
Go to UniProtKB:  Q56403
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ56403
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
V-type ATP synthase beta chain
D, E, F
478Thermus thermophilus HB8Mutation(s): 0 
UniProt
Find proteins for Q56404 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore Q56404 
Go to UniProtKB:  Q56404
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ56404
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
V-type ATP synthase subunit D223Thermus thermophilus HB8Mutation(s): 0 
UniProt
Find proteins for O87880 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore O87880 
Go to UniProtKB:  O87880
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO87880
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 4
MoleculeChains Sequence LengthOrganismDetailsImage
V-type ATP synthase subunit F104Thermus thermophilus HB8Mutation(s): 0 
UniProt
Find proteins for P74903 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore P74903 
Go to UniProtKB:  P74903
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP74903
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 5
MoleculeChains Sequence LengthOrganismDetailsImage
V-type ATP synthase, subunit (VAPC-THERM)
I, K
104Thermus thermophilus HB8Mutation(s): 0 
UniProt
Find proteins for Q5SIT5 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore Q5SIT5 
Go to UniProtKB:  Q5SIT5
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ5SIT5
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 6
MoleculeChains Sequence LengthOrganismDetailsImage
V-type ATP synthase subunit E
J, L
188Thermus thermophilus HB8Mutation(s): 0 
UniProt
Find proteins for P74901 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore P74901 
Go to UniProtKB:  P74901
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP74901
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 7
MoleculeChains Sequence LengthOrganismDetailsImage
V-type ATP synthase subunit C323Thermus thermophilus HB8Mutation(s): 0 
UniProt
Find proteins for P74902 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore P74902 
Go to UniProtKB:  P74902
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP74902
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 9.70 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 
EM Software:
TaskSoftware PackageVersion
RECONSTRUCTIONBuild_Fspace
RECONSTRUCTIONFREALIGN
RECONSTRUCTIONRefine_Fspace

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2011-12-14
    Type: Initial release
  • Version 1.1: 2012-01-11
    Changes: Database references
  • Version 1.2: 2012-01-25
    Changes: Database references
  • Version 1.3: 2013-07-17
    Changes: Other
  • Version 1.4: 2018-07-18
    Changes: Data collection