3I80

Protein Tyrosine Phosphatase 1B - Transition state analog for the second catalytic step


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.25 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.199 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Insights into the reaction of protein-tyrosine phosphatase 1B: crystal structures for transition state analogs of both catalytic steps.

Brandao, T.A.Hengge, A.C.Johnson, S.J.

(2010) J.Biol.Chem. 285: 15874-15883

  • DOI: 10.1074/jbc.M109.066951
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Catalysis by protein-tyrosine phosphatase 1B (PTP1B) occurs through a two-step mechanism involving a phosphocysteine intermediate. We have solved crystal structures for the transition state analogs for both steps. Together with previously reported cr ...

    Catalysis by protein-tyrosine phosphatase 1B (PTP1B) occurs through a two-step mechanism involving a phosphocysteine intermediate. We have solved crystal structures for the transition state analogs for both steps. Together with previously reported crystal structures of apo-PTP1B, the Michaelis complex of an inactive mutant, the phosphoenzyme intermediate, and the product complex, a full picture of all catalytic steps can now be depicted. The transition state analog for the first catalytic step comprises a ternary complex between the catalytic cysteine of PTP1B, vanadate, and the peptide DADEYL, a fragment of a physiological substrate. The equatorial vanadate oxygen atoms bind to the P-loop, and the apical positions are occupied by the peptide tyrosine oxygen and by the PTP1B cysteine sulfur atom. The vanadate assumes a trigonal bipyramidal geometry in both transition state analog structures, with very similar apical O-O distances, denoting similar transition states for both phosphoryl transfer steps. Detailed interactions between the flanking peptide and the enzyme are discussed.


    Organizational Affiliation

    Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Tyrosine-protein phosphatase non-receptor type 1
A
321Homo sapiensMutation(s): 0 
Gene Names: PTPN1 (PTP1B)
EC: 3.1.3.48
Find proteins for P18031 (Homo sapiens)
Go to Gene View: PTPN1
Go to UniProtKB:  P18031
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GOL
Query on GOL

Download SDF File 
Download CCD File 
A
GLYCEROL
GLYCERIN; PROPANE-1,2,3-TRIOL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
VO4
Query on VO4

Download SDF File 
Download CCD File 
A
VANADATE ION
O4 V
LSGOVYNHVSXFFJ-UHFFFAOYSA-N
 Ligand Interaction
TRS
Query on TRS

Download SDF File 
Download CCD File 
A
2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL
TRIS BUFFER
C4 H12 N O3
LENZDBCJOHFCAS-UHFFFAOYSA-O
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
VO4IC50: 46 - 15200 nM (100) BINDINGDB
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.25 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.199 
  • Space Group: P 31 2 1
Unit Cell:
Length (Å)Angle (°)
a = 87.840α = 90.00
b = 87.840β = 90.00
c = 103.790γ = 120.00
Software Package:
Software NamePurpose
CrystalCleardata collection
d*TREKdata scaling
d*TREKdata reduction
PHASERphasing
PDB_EXTRACTdata extraction
PHENIXrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2010-03-16
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance