3G3W

Crystal structure of spin labeled T4 Lysozyme (T151R1) at 291 K


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.216 
  • R-Value Work: 0.171 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Structural origin of weakly ordered nitroxide motion in spin-labeled proteins.

Fleissner, M.R.Cascio, D.Hubbell, W.L.

(2009) Protein Sci. 18: 893-908

  • DOI: 10.1002/pro.96
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • A disulfide-linked nitroxide side chain (R1) used in site-directed spin labeling of proteins often exhibits an EPR spectrum characteristic of a weakly ordered z-axis anisotropic motion at topographically diverse surface sites, including those on heli ...

    A disulfide-linked nitroxide side chain (R1) used in site-directed spin labeling of proteins often exhibits an EPR spectrum characteristic of a weakly ordered z-axis anisotropic motion at topographically diverse surface sites, including those on helices, loops and edge strands of beta-sheets. To elucidate the origin of this motion, the first crystal structures of R1 that display simple z-axis anisotropic motion at solvent-exposed helical sites (131 and 151) and a loop site (82) in T4 lysozyme have been determined. Structures of 131R1 and 151R1 determined at cryogenic or ambient temperature reveal an intraresidue C(alpha)--H...S(delta) interaction that immobilizes the disulfide group, consistent with a model in which the internal motions of R1 are dominated by rotations about the two terminal bonds (Columbus, Kálai, Jeko, Hideg, and Hubbell, Biochemistry 2001;40:3828-3846). Remarkably, the 131R1 side chain populates two rotamers equally, but the EPR spectrum reflects a single dominant dynamic population, showing that the two rotamers have similar internal motion determined by the common disulfide-backbone interaction. The anisotropic motion for loop residue 82R1 is also accounted for by a common disulfide-backbone interaction, showing that the interaction does not require a specific secondary structure. If the above observations prove to be general, then significant variations in order and rate for R1 at noninteracting solvent-exposed helical and loop sites can be assigned to backbone motion because the internal motion is essentially constant.


    Organizational Affiliation

    Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-7008.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Lysozyme
A
164Enterobacteria phage T4Mutation(s): 3 
Gene Names: E
EC: 3.2.1.17
Find proteins for P00720 (Enterobacteria phage T4)
Go to UniProtKB:  P00720
Small Molecules
Ligands 4 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CL
Query on CL

Download SDF File 
Download CCD File 
A
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
HED
Query on HED

Download SDF File 
Download CCD File 
A
2-HYDROXYETHYL DISULFIDE
C4 H10 O2 S2
KYNFOMQIXZUKRK-UHFFFAOYSA-N
 Ligand Interaction
AZI
Query on AZI

Download SDF File 
Download CCD File 
A
AZIDE ION
N3
IVRMZWNICZWHMI-UHFFFAOYSA-N
 Ligand Interaction
MTN
Query on MTN

Download SDF File 
Download CCD File 
A
S-[(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl] methanesulfonothioate
MTSL
C10 H18 N O3 S2
MXZPGYFBZHBAQM-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.216 
  • R-Value Work: 0.171 
  • Space Group: P 32 2 1
Unit Cell:
Length (Å)Angle (°)
a = 60.657α = 90.00
b = 60.657β = 90.00
c = 96.448γ = 120.00
Software Package:
Software NamePurpose
SCALEPACKdata scaling
PHENIXrefinement
DENZOdata reduction
PDB_EXTRACTdata extraction
CrystalCleardata collection

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-05-05
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance
  • Version 1.2: 2011-07-27
    Type: Non-polymer description
  • Version 1.3: 2017-11-01
    Type: Advisory, Refinement description