3FZE

Structure of the 'minimal scaffold' (ms) domain of Ste5 that cocatalyzes Fus3 phosphorylation by Ste7


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.237 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.210 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation.

Good, M.Tang, G.Singleton, J.Remenyi, A.Lim, W.A.

(2009) Cell 136: 1085-1097

  • DOI: 10.1016/j.cell.2009.01.049
  • Primary Citation of Related Structures:  
    3FZE

  • PubMed Abstract: 
  • The scaffold protein Ste5 is required to properly direct signaling through the yeast mating pathway to the mitogen-activated protein kinase (MAPK), Fus3. Scaffolds are thought to function by tethering kinase and substrate in proximity. We find, however, that the previously identified Fus3-binding site on Ste5 is not required for signaling, suggesting an alternative mechanism controls Fus3's activation by the MAPKK Ste7 ...

    The scaffold protein Ste5 is required to properly direct signaling through the yeast mating pathway to the mitogen-activated protein kinase (MAPK), Fus3. Scaffolds are thought to function by tethering kinase and substrate in proximity. We find, however, that the previously identified Fus3-binding site on Ste5 is not required for signaling, suggesting an alternative mechanism controls Fus3's activation by the MAPKK Ste7. Reconstituting MAPK signaling in vitro, we find that Fus3 is an intrinsically poor substrate for Ste7, although the related filamentation MAPK, Kss1, is an excellent substrate. We identify and structurally characterize a domain in Ste5 that catalytically unlocks Fus3 for phosphorylation by Ste7. This domain selectively increases the k(cat) of Ste7-->Fus3 phosphorylation but has no effect on Ste7-->Kss1 phosphorylation. The dual requirement for both Ste7 and this Ste5 domain in Fus3 activation explains why Fus3 is selectively activated by the mating pathway and not by other pathways that also utilize Ste7.


    Organizational Affiliation

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Protein STE5A196Saccharomyces cerevisiaeMutation(s): 0 
Gene Names: NUL3STE5YD8557.12YDR103W
UniProt
Find proteins for P32917 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P32917 
Go to UniProtKB:  P32917
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.237 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.210 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 46.803α = 90
b = 63.569β = 90
c = 69.091γ = 90
Software Package:
Software NamePurpose
SOLVEphasing
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-03-31
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2017-08-23
    Changes: Data collection