3BU6

Crystal structure of the insulin receptor kinase in complex with IRS2 KRLB phosphopeptide


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.95 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.200 
  • R-Value Observed: 0.202 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structural and biochemical characterization of the KRLB region in insulin receptor substrate-2.

Wu, J.Tseng, Y.D.Xu, C.F.Neubert, T.A.White, M.F.Hubbard, S.R.

(2008) Nat Struct Mol Biol 15: 251-258

  • DOI: 10.1038/nsmb.1388
  • Primary Citation of Related Structures:  
    3BU6, 3BU3, 3BU5

  • PubMed Abstract: 
  • Insulin receptor substrates 1 and 2 (IRS1 and -2) are crucial adaptor proteins in mediating the metabolic and mitogenic effects of insulin and insulin-like growth factor 1. These proteins consist of a pleckstrin homology domain, a phosphotyrosine bin ...

    Insulin receptor substrates 1 and 2 (IRS1 and -2) are crucial adaptor proteins in mediating the metabolic and mitogenic effects of insulin and insulin-like growth factor 1. These proteins consist of a pleckstrin homology domain, a phosphotyrosine binding domain and a C-terminal region containing numerous sites of tyrosine, serine and threonine phosphorylation. Previous yeast two-hybrid studies identified a region unique to IRS2, termed the kinase regulatory-loop binding (KRLB) region, which interacts with the tyrosine kinase domain of the insulin receptor. Here we present the crystal structure of the insulin receptor kinase in complex with a 15-residue peptide from the KRLB region. In the structure, this segment of IRS2 is bound in the kinase active site with Tyr628 positioned for phosphorylation. Although Tyr628 was phosphorylated by the insulin receptor, its catalytic turnover was poor, resulting in kinase inhibition. Our studies indicate that the KRLB region functions to limit tyrosine phosphorylation of IRS2.


    Organizational Affiliation

    Structural Biology Program, Kimmel Center for Biology and Medicine of the Skirball Institute, and Department of Pharmacology, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
insulin receptor subunit betaA306Homo sapiensMutation(s): 2 
Gene Names: INSR
EC: 2.7.10.1
Find proteins for P06213 (Homo sapiens)
Explore P06213 
Go to UniProtKB:  P06213
NIH Common Fund Data Resources
PHAROS  P06213
Protein Feature View
Expand
  • Reference Sequence
  • Find similar proteins by:  Sequence   |   Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
Insulin receptor substrate 2B15N/AMutation(s): 0 
Find proteins for P81122 (Mus musculus)
Explore P81122 
Go to UniProtKB:  P81122
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
PTR
Query on PTR
AL-PEPTIDE LINKINGC9 H12 N O6 PTYR
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.95 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.200 
  • R-Value Observed: 0.202 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 46.738α = 90
b = 84.724β = 113.13
c = 51.349γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
ADSCdata collection
HKL-2000data reduction
HKL-2000data scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

  • Deposited Date: 2007-12-31 
  • Released Date: 2008-02-19 
  • Deposition Author(s): Wu, J., Hubbard, S.R.

Revision History 

  • Version 1.0: 2008-02-19
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance