3AY8

Glutathione S-transferase unclassified 2 from Bombyx mori


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.185 
  • R-Value Observed: 0.187 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystallographic survey of active sites of an unclassified glutathione transferase from Bombyx mori

Kakuta, Y.Usuda, K.Nakashima, T.Kimura, M.Aso, Y.Yamamoto, K.

(2011) Biochim Biophys Acta 1810: 1355-1360

  • DOI: https://doi.org/10.1016/j.bbagen.2011.06.022
  • Primary Citation of Related Structures:  
    3AY8

  • PubMed Abstract: 

    Glutathione transferase (GST) catalyzes a major step in the xenobiotic detoxification pathway. We previously identified a novel, unclassified GST that is upregulated in an insecticide-resistant silkworm (Bombyx mori) upon insecticide exposure. Here, we sought to further characterize this GST, bmGSTu, by solving and refining its crystal structure and identifying its catalytic residues. The structure of wild-type bmGSTu was determined with a resolution of 2.1Å by synchrotron radiation and molecular modeling. Potential catalytic residues were mutated to alanine by means of site-directed mutagenesis, and kinetic data determined for wild-type and mutated bmGSTu. We found that bmGSTu occurred as a dimer, and that, like other GSTs, each subunit displayed a G-site and an H-site in the active center. Bound glutathione could be localized at the G-site. Kinetic data of the mutated forms of bmGSTu show that Val55, Glu67, and Ser68 in the G-site are important for catalysis. Furthermore, the H-site showed some unique features. This is the first study to our knowledge to elucidate the molecular conformation of this B. mori GST. Our results indicate that residues Val55, Glu67, and Ser68, as well as Tyr7 and Ser12, in the glutathione-binding region of bmGSTu are critical for catalytic function. Our results, together with our previous finding that bmGSTu was preferentially induced in an insecticide-resistant strain, support the idea that bmGSTu functions in the transformation of exogenous chemical agents. Furthermore, the unique features observed in bmGSTu may shed light on mechanisms of insecticide resistance.


  • Organizational Affiliation

    Faculty of Agriculture, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Glutathione S-transferase216Bombyx moriMutation(s): 0 
UniProt
Find proteins for Q2F690 (Bombyx mori)
Explore Q2F690 
Go to UniProtKB:  Q2F690
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ2F690
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
GOL
Query on GOL

Download Ideal Coordinates CCD File 
B [auth A]GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.185 
  • R-Value Observed: 0.187 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 71.398α = 90
b = 71.398β = 90
c = 90.344γ = 120
Software Package:
Software NamePurpose
ADSCdata collection
MOLREPphasing
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2011-09-07
    Type: Initial release
  • Version 1.1: 2013-06-19
    Changes: Database references
  • Version 1.2: 2023-11-01
    Changes: Data collection, Database references, Derived calculations, Refinement description