3AIU

Crystal structure of beta-glucosidase in rye


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.2 Å
  • R-Value Free: 0.218 
  • R-Value Work: 0.201 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Active-site architecture of benzoxazinone-glucoside beta-D-glucosidases in Triticeae

Sue, M.Nakamura, C.Miyamoto, T.Yajima, S.

(2011) Plant Sci. 180: 268-275

  • DOI: 10.1016/j.plantsci.2010.09.001
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The β-D-glucosidases from wheat (Triticum aestivum) and rye (Secale cereale) hydrolyze benzoxazinone-glucose conjugates. Although wheat and rye glucosidases have high sequence identity, they have different substrate preferences; the wheat enzyme favo ...

    The β-D-glucosidases from wheat (Triticum aestivum) and rye (Secale cereale) hydrolyze benzoxazinone-glucose conjugates. Although wheat and rye glucosidases have high sequence identity, they have different substrate preferences; the wheat enzyme favors DIMBOA-Glc (2-O-β-D-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one) over DIBOA-Glc (7-demethoxy-DIMBOA-Glc), whereas the rye enzyme preference is the opposite. To investigate the mechanism of substrate binding, we analyzed crystal structures of an inactive mutant of the wheat glucosidase complexed with the natural substrate DIMBOA-Glc, wheat and rye glucosidases complexed with an aglycone DIMBOA, and wheat and rye glucosidases complexed with an inhibitor 2-fluoro-2-deoxy-β-D-glucose. The binding position of substrate in the active site was determined but interaction between the substrate and Ser-464 or Leu-465 was not observed, although amino acid residues at these two positions are the only structural distinctions between wheat and rye glucosidase catalytic pockets. Variation at these two positions alters the width of the pocket entrance, which may relate to observed differences in substrate specificity. The side chain of Glu-462 that forms hydrogen bonds with the glucose moiety of DIMBOA-Glc moved deeper into the pocket upon substrate binding, and mutation of this residue dramatically decreased enzyme activity.


    Organizational Affiliation

    Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan. sue@nodai.ac.jp




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Beta-glucosidase
A
564Secale cerealeMutation(s): 0 
EC: 3.2.1.182
Find proteins for Q9FYS3 (Secale cereale)
Go to UniProtKB:  Q9FYS3
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download SDF File 
Download CCD File 
A
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
GOL
Query on GOL

Download SDF File 
Download CCD File 
A
GLYCEROL
GLYCERIN; PROPANE-1,2,3-TRIOL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.2 Å
  • R-Value Free: 0.218 
  • R-Value Work: 0.201 
  • Space Group: P 41 3 2
Unit Cell:
Length (Å)Angle (°)
a = 194.526α = 90.00
b = 194.526β = 90.00
c = 194.526γ = 90.00
Software Package:
Software NamePurpose
ADSCdata collection
MOLREPphasing
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2011-02-23
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance
  • Version 1.2: 2012-04-04
    Type: Database references