3A96

Crystal structure of hen egg white lysozyme soaked with 100mM RhCl3 at pH2.2


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.225 
  • R-Value Work: 0.194 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Elucidation of Metal-Ion Accumulation Induced by Hydrogen Bonds on Protein Surfaces by Using Porous Lysozyme Crystals Containing Rh(III) Ions as the Model Surfaces

Ueno, T.Abe, S.Koshiyama, T.Ohki, T.Hikage, T.Watanabe, Y.

(2010) Chemistry 16: 2730-2740

  • DOI: 10.1002/chem.200903269
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There ...

    Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There remain many unknowns, as to how proteins affect the initial process at the atomic level, although multistep assembly processes of the materials formation by both native and model systems have been clarified at the macroscopic level. Herein the cooperative effects of amino acids and hydrogen bonds promoting metal accumulation reactions are clarified by using porous hen egg white lysozyme (HEWL) crystals containing Rh(III) ions, as model protein surfaces for the reactions. The experimental results reveal noteworthy implications for initiation of metal accumulation, which involve highly cooperative dynamics of amino acids and hydrogen bonds: i) Disruption of hydrogen bonds can induce conformational changes of amino-acid residues to capture Rh(III) ions. ii) Water molecules pre-organized by hydrogen bonds can stabilize Rh(III) coordination as aqua ligands. iii) Water molecules participating in hydrogen bonds with amino-acid residues can be replaced by Rh(III) ions to form polynuclear structures with the residues. iv) Rh(III) aqua complexes are retained on amino-acid residues through stabilizing hydrogen bonds even at low pH (approximately 2). These metal-protein interactions including hydrogen bonds may promote native metal accumulation reactions and also may be useful in the preparation of new inorganic materials that incorporate proteins.


    Organizational Affiliation

    Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. taka@sbchem.kyoto-u.ac.jp




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Lysozyme C
A
129Gallus gallusGene Names: LYZ
EC: 3.2.1.17
Find proteins for P00698 (Gallus gallus)
Go to Gene View: LYZ
Go to UniProtKB:  P00698
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
RH3
Query on RH3

Download SDF File 
Download CCD File 
A
RHODIUM(III) ION
Rh
PZSJYEAHAINDJI-UHFFFAOYSA-N
 Ligand Interaction
NA
Query on NA

Download SDF File 
Download CCD File 
A
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
 Ligand Interaction
CL
Query on CL

Download SDF File 
Download CCD File 
A
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.225 
  • R-Value Work: 0.194 
  • Space Group: P 43 21 2
Unit Cell:
Length (Å)Angle (°)
a = 77.967α = 90.00
b = 77.967β = 90.00
c = 37.140γ = 90.00
Software Package:
Software NamePurpose
DENZOdata reduction
MOLREPphasing
CrystalCleardata collection
SCALEPACKdata scaling
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2010-03-09
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance