2LR5

1H chemical shift assignments for micasin


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.0 of the entry. See complete history


Literature

Dermatophytic defensin with antiinfective potential

Zhu, S.Gao, B.Harvey, P.J.Craik, D.J.

(2012) Proc Natl Acad Sci U S A 109: 8495-8500

  • DOI: 10.1073/pnas.1201263109
  • Primary Citation of Related Structures:  
    2LR5

  • PubMed Abstract: 
  • Fungi are a newly emerging source of peptide antibiotics with therapeutic potential. Here, we report 17 new fungal defensin-like peptide (fDLP) genes and the detailed characterization of a corresponding synthetic fDLP (micasin) from a dermatophyte in terms of its structure, activity and therapeutic potential ...

    Fungi are a newly emerging source of peptide antibiotics with therapeutic potential. Here, we report 17 new fungal defensin-like peptide (fDLP) genes and the detailed characterization of a corresponding synthetic fDLP (micasin) from a dermatophyte in terms of its structure, activity and therapeutic potential. NMR analysis showed that synthetic micasin adopts a "hallmark" cysteine-stabilized α-helical and β-sheet fold. It was active on both gram-positive and gram-negative bacteria, and importantly it killed two clinical isolates of methicillin-resistant Staphylococcus aureus and the opportunistic pathogen Pseudomonas aeruginosa at low micromolar concentrations. Micasin killed approximately 100% of treated bacteria within 3 h through a membrane nondisruptive mechanism of action, and showed extremely low hemolysis and high serum stability. Consistent with these functional properties, micasin increases survival in mice infected by the pathogenic bacteria in a peritonitis model. Our work represents a valuable approach to explore novel peptide antibiotics from a large resource of fungal genomes.


    Organizational Affiliation

    Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing, China. Zhusy@ioz.ac.cn



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
micasin A38Microsporum canisMutation(s): 0 
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 
  • OLDERADO: 2LR5 Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2012-06-27
    Type: Initial release