2C4N

NagD from E.coli K-12 strain


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.218 
  • R-Value Work: 0.198 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structure and Activity Analyses of Escherichia Coli K-12 Nagd Provide Insight Into the Evolution of Biochemical Function in the Haloalkanoic Acid Dehalogenase Superfamily

Tremblay, L.W.Dunaway-Mariano, D.Allen, K.

(2006) Biochemistry 45: 1183

  • DOI: 10.1021/bi051842j

  • PubMed Abstract: 
  • The HAD superfamily is a large superfamily of proteins which share a conserved core domain that provides those active site residues responsible for the chemistry common to all family members. The superfamily is further divided into the four subfamili ...

    The HAD superfamily is a large superfamily of proteins which share a conserved core domain that provides those active site residues responsible for the chemistry common to all family members. The superfamily is further divided into the four subfamilies I, IIA, IIB, and III, based on the topology and insertion site of a cap domain that provides substrate specificity. This structural and functional division implies that members of a given HAD structural subclass may target substrates that have similar structural characteristics. To understand the structure/function relationships in all of the subfamilies, a type IIA subfamily member, NagD from Escherichia coli K-12, was selected (type I, IIB, and III members have been more extensively studied). The structure of the NagD protein was solved to 1.80 A with R(work) = 19.8% and R(free) = 21.8%. Substrate screening and kinetic analysis showed NagD to have high specificity for nucleotide monophosphates with k(cat)/K(m) = 3.12 x 10(4) and 1.28 x 10(4) microM(-)(1) s(-)(1) for UMP and GMP, respectively. This specificity is consistent with the presence of analogues of NagD that exist as fusion proteins with a nucleotide pyrophosphatase from the Nudix family. Docking of the nucleoside substrate in the active site brings it in contact with conserved residues from the cap domain that can act as a substrate specificity loop (NagD residues 144-149) in the type IIA subfamily. NagD and other subfamily IIA and IIB members show the common trait that substrate specificity and catalytic efficiencies (k(cat)/K(m)) are low (1 x 10(4) M(-)(1) s(-)(1)) and the boundaries defining physiological substrates are somewhat overlapping. The ability to catabolize other related secondary metabolites indicates that there is regulation at the genetic level.


    Organizational Affiliation

    Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
PROTEIN NAGD
A
250Escherichia coli (strain K12)Gene Names: nagD
EC: 3.1.3.5
Find proteins for P0AF24 (Escherichia coli (strain K12))
Go to UniProtKB:  P0AF24
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
PO4
Query on PO4

Download SDF File 
Download CCD File 
A
PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.218 
  • R-Value Work: 0.198 
  • Space Group: I 2 2 2
Unit Cell:
Length (Å)Angle (°)
a = 53.914α = 90.00
b = 94.801β = 90.00
c = 119.236γ = 90.00
Software Package:
Software NamePurpose
CNSrefinement
HKL-2000data reduction
SCALEPACKdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2006-01-26
    Type: Initial release
  • Version 1.1: 2011-05-08
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance