2ZQ0

Crystal structure of SusB complexed with acarbose


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.187 
  • R-Value Work: 0.171 

wwPDB Validation   3D Report Full Report


This is version 2.0 of the entry. See complete history


Literature

Structural and functional analysis of a glycoside hydrolase family 97 enzyme from Bacteroides thetaiotaomicron.

Kitamura, M.Okuyama, M.Tanzawa, F.Mori, H.Kitago, Y.Watanabe, N.Kimura, A.Tanaka, I.Yao, M.

(2008) J Biol Chem 283: 36328-36337

  • DOI: 10.1074/jbc.M806115200
  • Primary Citation of Related Structures:  
    2D73, 2ZQ0

  • PubMed Abstract: 
  • SusB, an 84-kDa alpha-glucoside hydrolase involved in the starch utilization system (sus) of Bacteroides thetaiotaomicron, belongs to glycoside hydrolase (GH) family 97. We have determined the enzymatic characteristics and the crystal structures in free and acarbose-bound form at 1 ...

    SusB, an 84-kDa alpha-glucoside hydrolase involved in the starch utilization system (sus) of Bacteroides thetaiotaomicron, belongs to glycoside hydrolase (GH) family 97. We have determined the enzymatic characteristics and the crystal structures in free and acarbose-bound form at 1.6A resolution. SusB hydrolyzes the alpha-glucosidic linkage, with inversion of anomeric configuration liberating the beta-anomer of glucose as the reaction product. The substrate specificity of SusB, hydrolyzing not only alpha-1,4-glucosidic linkages but also alpha-1,6-, alpha-1,3-, and alpha-1,2-glucosidic linkages, is clearly different from other well known glucoamylases belonging to GH15. The structure of SusB was solved by the single-wavelength anomalous diffraction method with sulfur atoms as anomalous scatterers using an in-house x-ray source. SusB includes three domains as follows: the N-terminal, catalytic, and C-terminal domains. The structure of the SusB-acarbose complex shows a constellation of carboxyl groups at the catalytic center; Glu532 is positioned to provide protonic assistance to leaving group departure, with Glu439 and Glu508 both positioned to provide base-catalyzed assistance for inverting nucleophilic attack by water. A structural comparison with other glycoside hydrolases revealed significant similarity between the catalytic domain of SusB and those of alpha-retaining glycoside hydrolases belonging to GH27, -36, and -31 despite the differences in catalytic mechanism. SusB and the other retaining enzymes appear to have diverged from a common ancestor and individually acquired the functional carboxyl groups during the process of evolution. Furthermore, sequence comparison of the active site based on the structure of SusB indicated that GH97 included both retaining and inverting enzymes.


    Organizational Affiliation

    Faculty of Advanced Life Science, Graduate School of Agriculture, Hokkaido University, Sapporo 060-0810, Japan.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Alpha-glucosidase (Alpha-glucosidase SusB)A, B738Bacteroides thetaiotaomicronMutation(s): 0 
Gene Names: susBBT_3703
EC: 3.2.1.20 (PDB Primary Data), 3.2.1.3 (UniProt)
UniProt
Find proteins for G8JZS4 (Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / JCM 5827 / CCUG 10774 / NCTC 10582 / VPI-5482 / E50))
Explore G8JZS4 
Go to UniProtKB:  G8JZS4
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupG8JZS4
Protein Feature View
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChainsChain Length2D DiagramGlycosylation3D Interactions
4,6-dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranoseC, D 3N/AN/A Oligosaccharides Interaction
Glycosylation Resources
GlyTouCan:  G66431MI
GlyCosmos:  G66431MI
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CA
Query on CA

Download Ideal Coordinates CCD File 
E [auth A],
F [auth B]
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
Biologically Interesting Molecules (External Reference) 1 Unique
Entity ID: 2
IDChainsNameType/Class2D Diagram3D Interactions
PRD_900007
Query on PRD_900007
C, Dalpha-acarboseOligosaccharide / Inhibitor Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.187 
  • R-Value Work: 0.171 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 75.717α = 90
b = 112.344β = 100.61
c = 102.467γ = 90
Software Package:
Software NamePurpose
CrystalCleardata collection
CNSrefinement
LAFIRErefinement
HKL-2000data reduction
HKL-2000data scaling
CNSphasing

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-10-28
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Database references, Derived calculations, Non-polymer description, Structure summary