2XKM

Consensus structure of Pf1 filamentous bacteriophage from X-ray fibre diffraction and solid-state NMR


Experimental Data Snapshot

  • Method: FIBER DIFFRACTION
  • Resolution: 3.3 Å

  • Method: SOLID-STATE NMR
  • Conformers Submitted: 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Consensus Structure of Pf1 Filamentous Bacteriophage from X-Ray Fibre Diffraction and Solid-State NMR.

Straus, S.K.Scott, W.R.Schwieters, C.D.Marvin, D.A.

(2011) Eur.Biophys.J. 40: 221

  • DOI: 10.1007/s00249-010-0640-9

  • PubMed Abstract: 
  • Filamentous bacteriophages (filamentous bacterial viruses or Inovirus) are simple and well-characterised macromolecular assemblies that are widely used in molecular biology and biophysics, both as paradigms for studying basic biological questions and ...

    Filamentous bacteriophages (filamentous bacterial viruses or Inovirus) are simple and well-characterised macromolecular assemblies that are widely used in molecular biology and biophysics, both as paradigms for studying basic biological questions and as practical tools in areas as diverse as immunology and solid-state physics. The strains fd, M13 and f1 are virtually identical filamentous phages that infect bacteria expressing F-pili, and are sometimes grouped as the Ff phages. For historical reasons fd has often been used for structural studies, but M13 and f1 are more often used for biological experiments. Many other strains have been identified that are genetically quite distinct from Ff and yet have a similar molecular structure and life cycle. One of these, Pf1, gives the highest resolution X-ray fibre diffraction patterns known for filamentous bacteriophage. These diffraction patterns have been used in the past to derive a molecular model for the structure of the phage. Solid-state NMR experiments have been used in separate studies to derive a significantly different model of Pf1. Here we combine previously published X-ray fibre diffraction data and solid-state NMR data to give a consensus structure model for Pf1 filamentous bacteriophage, and we discuss the implications of this model for assembly of the phage at the bacterial membrane.


    Related Citations: 
    • Dynamics of Telescoping Inovirus: A Mechanism for Assembly at Membrane Adhesions.
      Marvin, D.A.
      (1989) Int.J.Biol.Macromol. 11: 159
    • The Hand of the Filamentous Bacteriophage Helix.
      Straus, S.K.,Scott, W.R.P.,Marvin, D.A.
      (2008) Eur.Biophys.J. 37: 1077
    • Structural Basis of the Temperature Transition of Pf1 Bacteriophage.
      Thiriot, D.S.,Nevzorov, A.A.,Opella, S.J.
      (2005) Protein Sci. 14: 1064
    • Pf1 Filamentous Bacteriophage: Refinement of a Molecular Model by Simulated Annealing Using 3.3 A Resolution X-Ray Fibre Diffraction Data.
      Gonzalez, A.,Nave, C.,Marvin, D.A.
      (1995) Acta Crystallogr.,Sect.D 51: 792


    Organizational Affiliation

    Department of Chemistry, University of British Columbia, Vancouver, BC V6T1Z1, Canada.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
CAPSID PROTEIN G8P
A
46Pseudomonas phage Pf1Mutation(s): 0 
Gene Names: VIII
Find proteins for P03621 (Pseudomonas phage Pf1)
Go to UniProtKB:  P03621
Experimental Data & Validation

Experimental Data

  • Method: FIBER DIFFRACTION
  • Resolution: 3.3 Å
  • Method: SOLID-STATE NMR
  • Conformers Submitted: 
Software Package:
Software NamePurpose
XPLOR-NIHphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2010-11-24
    Type: Initial release
  • Version 1.1: 2013-11-27
    Type: Data collection, Database references, Other, Version format compliance