2WS0

Semi-synthetic analogue of human insulin NMeAlaB26-insulin at pH 7.5


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.1 Å
  • R-Value Free: 0.337 
  • R-Value Work: 0.242 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Implications for the Active Form of Human Insulin Based on the Structural Convergence of Highly Active Hormone Analogues.

Jiracek, J.Zakova, L.Antolikova, E.Watson, C.J.Turkenburg, J.P.Dodson, G.G.Brzozowski, A.M.

(2010) Proc.Natl.Acad.Sci.USA 107: 1966

  • DOI: 10.1073/pnas.0911785107
  • Primary Citation of Related Structures:  2WRU, 2WRV, 2WRW, 2WRX, 2WS1, 2WS4, 2WS6, 2WS7

  • PubMed Abstract: 
  • Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, howeve ...

    Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states. The active monomeric structure, when in complex with the receptor, must be different as the residues crucial for the interactions are buried within the multimeric forms. Although the exact nature of the insulin's induced-fit is unknown, there is strong evidence that the C-terminal part of the B-chain is a dynamic element in insulin activation and receptor binding. Here, we present the design and analysis of highly active (200-500%) insulin analogues that are truncated at residue 26 of the B-chain (B(26)). They show a structural convergence in the form of a new beta-turn at B(24)-B(26). We propose that the key element in insulin's transition, from an inactive to an active state, may be the formation of the beta-turn at B(24)-B(26) associated with a trans to cis isomerisation at the B(25)-B(26) peptide bond. Here, this turn is achieved with N-methylated L-amino acids adjacent to the trans to cis switch at the B(25)-B(26) peptide bond or by the insertion of certain D-amino acids at B(26). The resultant conformational changes unmask previously buried amino acids that are implicated in IR binding and provide structural details for new approaches in rational design of ligands effective in combating diabetes.


    Organizational Affiliation

    Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, vvi, Flemingovo nám 2, 166 10 Prague 6, Czech Republic.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
INSULIN A CHAIN
A
21Homo sapiensGene Names: INS
Find proteins for P01308 (Homo sapiens)
Go to Gene View: INS
Go to UniProtKB:  P01308
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
INSULIN B CHAIN
B
30Homo sapiensGene Names: INS
Find proteins for P01308 (Homo sapiens)
Go to Gene View: INS
Go to UniProtKB:  P01308
Small Molecules
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
MAA
Query on MAA
B
L-peptide linkingC4 H9 N O2ALA
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.1 Å
  • R-Value Free: 0.337 
  • R-Value Work: 0.242 
  • Space Group: I 41 2 2
Unit Cell:
Length (Å)Angle (°)
a = 39.444α = 90.00
b = 39.444β = 90.00
c = 124.679γ = 90.00
Software Package:
Software NamePurpose
SCALEPACKdata scaling
MOLREPphasing
DENZOdata reduction
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2010-02-09
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Advisory, Version format compliance
  • Version 1.2: 2012-06-06
    Type: Other