2V59

CRYSTAL STRUCTURE OF BIOTIN CARBOXYLASE FROM E.COLI IN COMPLEX WITH POTENT INHIBITOR 2


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.4 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.208 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

A Class of Selective Antibacterials Derived from a Protein Kinase Inhibitor Pharmacophore.

Miller, J.R.Dunham, S.Mochalkin, I.Banotai, C.Bowman, M.Buist, S.Dunkle, B.Hanna, D.Harwood, H.J.Huband, M.D.Karnovsky, A.Kuhn, M.Limberakis, C.Liu, J.Y.Mehrens, S.Mueller, W.T.Narasimhan, L.Ogden, A.Ohren, J.Prasad, J.V.Shelly, J.A.Skerlos, L.Sulavik, M.Thomas, V.H.Vanderroest, S.Wang, L.Wang, Z.Whitton, A.Zhu, T.Stover, C.K.

(2009) Proc.Natl.Acad.Sci.USA 106: 1737

  • DOI: 10.1073/pnas.0811275106
  • Primary Citation of Related Structures:  2V58, 2V5A

  • PubMed Abstract: 
  • As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack o ...

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.


    Organizational Affiliation

    Pfizer, Inc., Ann Arbor, MI 48105, USA. richard.miller2@pfizer.com




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
BIOTIN CARBOXYLASE
A, B
449Escherichia coli (strain K12)Gene Names: accC (fabG)
EC: 6.4.1.2, 6.3.4.14
Find proteins for P24182 (Escherichia coli (strain K12))
Go to UniProtKB:  P24182
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
LZK
Query on LZK

Download SDF File 
Download CCD File 
A, B
6-(2,6-DIMETHOXYPHENYL)PYRIDO[2,3-D]PYRIMIDINE-2,7-DIAMINE
C15 H15 N5 O2
LRPHIAJXODIASX-UHFFFAOYSA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
LZKKd: 6.53 nM BINDINGMOAD
LZKKd: 6.53 nM PDBBIND
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.4 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.208 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 84.190α = 90.00
b = 106.203β = 90.00
c = 123.055γ = 90.00
Software Package:
Software NamePurpose
MOLREPphasing
HKL-2000data scaling
HKL-2000data reduction
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-01-13
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Advisory, Version format compliance