2R14

Structure of morphinone reductase in complex with tetrahydroNAD


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.4 Å
  • R-Value Free: 0.181 
  • R-Value Work: 0.156 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Mutagenesis of morphinone reductase induces multiple reactive configurations and identifies potential ambiguity in kinetic analysis of enzyme tunneling mechanisms.

Pudney, C.R.Hay, S.Pang, J.Costello, C.Leys, D.Sutcliffe, M.J.Scrutton, N.S.

(2007) J.Am.Chem.Soc. 129: 13949-13956

  • DOI: 10.1021/ja074463h

  • PubMed Abstract: 
  • We have identified multiple reactive configurations (MRCs) of an enzyme-coenzyme complex that have measurably different kinetic properties. In the complex formed between morphinone reductase (MR) and the NADH analogue 1,4,5,6-tetrahydro-NADH (NADH4) ...

    We have identified multiple reactive configurations (MRCs) of an enzyme-coenzyme complex that have measurably different kinetic properties. In the complex formed between morphinone reductase (MR) and the NADH analogue 1,4,5,6-tetrahydro-NADH (NADH4) the nicotinamide moiety is restrained close to the FMN isoalloxazine ring by hydrogen bonds from Asn-189 and His-186 as determined from the X-ray crystal structure. Molecular dynamic simulations indicate that removal of one of these hydrogen bonds in the N189A MR mutant allows the nicotinamide moiety to occupy a region of configurational space not accessible in wild-type enzyme. Using stopped-flow spectroscopy, we show that reduction of the FMN cofactor by NADH in N189A MR is multiphasic, identifying at least four different reactive configurations of the MR-NADH complex. This contrasts with wild-type MR in which hydride transfer occurs by environmentally coupled tunneling in a single kinetic phase [Pudney et al. J. Am. Chem. Soc. 2006, 128, 14053-14058]. Values for primary and alpha-secondary kinetic isotope effects, and their temperature dependence, for three of the kinetic phases in the N189A MR are consistent with hydride transfer by tunneling. Our analysis enables derivation of mechanistic information concerning different reactive configurations of the same enzyme-coenzyme complex using ensemble stopped-flow methods. Implications for the interpretation from kinetic data of tunneling mechanisms in enzymes are discussed.


    Organizational Affiliation

    Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester, M1 7DN, U.K.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Morphinone reductase
A
377Pseudomonas putidaMutation(s): 0 
Gene Names: morB
Find proteins for Q51990 (Pseudomonas putida)
Go to UniProtKB:  Q51990
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
FMN
Query on FMN

Download SDF File 
Download CCD File 
A
FLAVIN MONONUCLEOTIDE
RIBOFLAVIN MONOPHOSPHATE
C17 H21 N4 O9 P
FVTCRASFADXXNN-SCRDCRAPSA-N
 Ligand Interaction
TXD
Query on TXD

Download SDF File 
Download CCD File 
A
1,4,5,6-TETRAHYDRONICOTINAMIDE ADENINE DINUCLEOTIDE
C21 H31 N7 O14 P2
GFDCQHGWOHYWLP-BFAIWXBASA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
TXDKd: 630000 nM BINDINGMOAD
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.4 Å
  • R-Value Free: 0.181 
  • R-Value Work: 0.156 
  • Space Group: I 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 50.271α = 90.00
b = 118.888β = 90.00
c = 180.708γ = 90.00
Software Package:
Software NamePurpose
AMoREphasing
SCALEPACKdata scaling
ADSCdata collection
DENZOdata reduction
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2008-07-01
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance