2QEP

Crystal structure of the D1 domain of PTPRN2 (IA2beta)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.286 
  • R-Value Work: 0.236 
  • R-Value Observed: 0.239 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Large-scale structural analysis of the classical human protein tyrosine phosphatome.

Barr, A.J.Ugochukwu, E.Lee, W.H.King, O.N.Filippakopoulos, P.Alfano, I.Savitsky, P.Burgess-Brown, N.A.Muller, S.Knapp, S.

(2009) Cell 136: 352-363

  • DOI: 10.1016/j.cell.2008.11.038
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Protein tyrosine phosphatases (PTPs) play a critical role in regulating cellular functions by selectively dephosphorylating their substrates. Here we present 22 human PTP crystal structures that, together with prior structural knowledge, enable a com ...

    Protein tyrosine phosphatases (PTPs) play a critical role in regulating cellular functions by selectively dephosphorylating their substrates. Here we present 22 human PTP crystal structures that, together with prior structural knowledge, enable a comprehensive analysis of the classical PTP family. Despite their largely conserved fold, surface properties of PTPs are strikingly diverse. A potential secondary substrate-binding pocket is frequently found in phosphatases, and this has implications for both substrate recognition and development of selective inhibitors. Structural comparison identified four diverse catalytic loop (WPD) conformations and suggested a mechanism for loop closure. Enzymatic assays revealed vast differences in PTP catalytic activity and identified PTPD1, PTPD2, and HDPTP as catalytically inert protein phosphatases. We propose a "head-to-toe" dimerization model for RPTPgamma/zeta that is distinct from the "inhibitory wedge" model and that provides a molecular basis for inhibitory regulation. This phosphatome resource gives an expanded insight into intrafamily PTP diversity, catalytic activity, substrate recognition, and autoregulatory self-association.


    Organizational Affiliation

    University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK. alastair.barr@sgc.ox.ac.uk



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Receptor-type tyrosine-protein phosphatase N2
A, B
304Homo sapiensMutation(s): 0 
Gene Names: PTPRN2KIAA0387
EC: 3.1.3.48 (PDB Primary Data), 3.1.3 (UniProt)
Find proteins for Q92932 (Homo sapiens)
Go to UniProtKB:  Q92932
NIH Common Fund Data Resources
PHAROS  Q92932
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CL
Query on CL

Download CCD File 
A
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.286 
  • R-Value Work: 0.236 
  • R-Value Observed: 0.239 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 131.541α = 90
b = 136.555β = 90
c = 35.752γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
MAR345data collection
MOSFLMdata reduction
SCALAdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Revision History 

  • Version 1.0: 2007-07-24
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Advisory, Version format compliance
  • Version 1.3: 2017-10-18
    Changes: Refinement description