Crystal structure of the PTPRJ inactivating mutant C1239S

Experimental Data Snapshot

  • Resolution: 2.30 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.184 

wwPDB Validation   3D Report Full Report

This is version 1.5 of the entry. See complete history


Large-scale structural analysis of the classical human protein tyrosine phosphatome.

Barr, A.J.Ugochukwu, E.Lee, W.H.King, O.N.Filippakopoulos, P.Alfano, I.Savitsky, P.Burgess-Brown, N.A.Muller, S.Knapp, S.

(2009) Cell 136: 352-363

  • DOI: https://doi.org/10.1016/j.cell.2008.11.038
  • Primary Citation of Related Structures:  
    2AHS, 2B49, 2CFV, 2CJZ, 2GJT, 2H4V, 2I75, 2JJD, 2NLK, 2NZ6, 2OC3, 2OOQ, 2P6X, 2PA5, 2QEP, 3B7O

  • PubMed Abstract: 

    Protein tyrosine phosphatases (PTPs) play a critical role in regulating cellular functions by selectively dephosphorylating their substrates. Here we present 22 human PTP crystal structures that, together with prior structural knowledge, enable a comprehensive analysis of the classical PTP family. Despite their largely conserved fold, surface properties of PTPs are strikingly diverse. A potential secondary substrate-binding pocket is frequently found in phosphatases, and this has implications for both substrate recognition and development of selective inhibitors. Structural comparison identified four diverse catalytic loop (WPD) conformations and suggested a mechanism for loop closure. Enzymatic assays revealed vast differences in PTP catalytic activity and identified PTPD1, PTPD2, and HDPTP as catalytically inert protein phosphatases. We propose a "head-to-toe" dimerization model for RPTPgamma/zeta that is distinct from the "inhibitory wedge" model and that provides a molecular basis for inhibitory regulation. This phosphatome resource gives an expanded insight into intrafamily PTP diversity, catalytic activity, substrate recognition, and autoregulatory self-association.

  • Organizational Affiliation

    University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK. alastair.barr@sgc.ox.ac.uk

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Receptor-type tyrosine-protein phosphatase eta316Homo sapiensMutation(s): 1 
Gene Names: PTPRJ
UniProt & NIH Common Fund Data Resources
Find proteins for Q12913 (Homo sapiens)
Explore Q12913 
Go to UniProtKB:  Q12913
PHAROS:  Q12913
GTEx:  ENSG00000149177 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ12913
Sequence Annotations
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Resolution: 2.30 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.184 
  • Space Group: H 3
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 88.521α = 90
b = 88.521β = 90
c = 118.95γ = 120
Software Package:
Software NamePurpose
MAR345data collection
MOSFLMdata reduction
CCP4data scaling

Structure Validation

View Full Validation Report

Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2006-12-12
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Advisory, Derived calculations, Refinement description, Version format compliance
  • Version 1.3: 2017-10-18
    Changes: Refinement description
  • Version 1.4: 2021-10-20
    Changes: Database references, Derived calculations
  • Version 1.5: 2023-08-30
    Changes: Data collection, Refinement description