2PQY

E. coli RNase 1 (in vitro refolded with DsbA only)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.240 
  • R-Value Work: 0.196 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

The oxidase DsbA folds a protein with a nonconsecutive disulfide.

Messens, J.Collet, J.F.Van Belle, K.Brosens, E.Loris, R.Wyns, L.

(2007) J.Biol.Chem. 282: 31302-31307

  • DOI: 10.1074/jbc.M705236200

  • PubMed Abstract: 
  • One of the last unsolved problems of molecular biology is how the sequential amino acid information leads to a functional protein. Correct disulfide formation within a protein is hereby essential. We present periplasmic ribonuclease I (RNase I) from ...

    One of the last unsolved problems of molecular biology is how the sequential amino acid information leads to a functional protein. Correct disulfide formation within a protein is hereby essential. We present periplasmic ribonuclease I (RNase I) from Escherichia coli as a new endogenous substrate for the study of oxidative protein folding. One of its four disulfides is between nonconsecutive cysteines. In general view, the folding of proteins with nonconsecutive disulfides requires the protein disulfide isomerase DsbC. In contrast, our study with RNase I shows that DsbA is a sufficient catalyst for correct disulfide formation in vivo and in vitro. DsbA is therefore more specific than generally assumed. Further, we show that the redox potential of the periplasm depends on the presence of glutathione and the Dsb proteins to maintain it at-165 mV. We determined the influence of this redox potential on the folding of RNase I. Under the more oxidizing conditions of dsb(-) strains, DsbC becomes necessary to correct non-native disulfides, but it cannot substitute for DsbA. Altogether, DsbA folds a protein with a nonconsecutive disulfide as long as no incorrect disulfides are formed.


    Organizational Affiliation

    Brussels Center for Redox Biology, Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, 1050 Brussel, Belgium. joris.messens@vub.ac.be




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Ribonuclease I
A
245Escherichia coli (strain K12)Mutation(s): 0 
Gene Names: rna (rnsA)
EC: 4.6.1.21
Find proteins for P21338 (Escherichia coli (strain K12))
Go to UniProtKB:  P21338
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CA
Query on CA

Download SDF File 
Download CCD File 
A
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
MES
Query on MES

Download SDF File 
Download CCD File 
A
2-(N-MORPHOLINO)-ETHANESULFONIC ACID
C6 H13 N O4 S
SXGZJKUKBWWHRA-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.240 
  • R-Value Work: 0.196 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 39.571α = 90.00
b = 49.548β = 97.68
c = 53.328γ = 90.00
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
CNSrefinement
MAR345data collection

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

  • Deposited Date: 2007-05-03 
  • Released Date: 2007-08-14 
  • Deposition Author(s): Messens, J., Loris, R.

Revision History 

  • Version 1.0: 2007-08-14
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance
  • Version 1.2: 2017-10-18
    Type: Refinement description