2N8H

Structural basis for the inhibition of voltage-gated sodium channels with conotoxin-muOxi-GVIIJ


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structural Basis for the Inhibition of Voltage-gated Sodium Channels by Conotoxin mu O-GVIIJ.

Green, B.R.Gajewiak, J.Chhabra, S.Skalicky, J.J.Zhang, M.M.Rivier, J.E.Bulaj, G.Olivera, B.M.Yoshikami, D.Norton, R.S.

(2016) J.Biol.Chem. 291: 7205-7220

  • DOI: 10.1074/jbc.M115.697672

  • PubMed Abstract: 
  • Cone snail toxins are well known blockers of voltage-gated sodium channels, a property that is of broad interest in biology and therapeutically in treating neuropathic pain and neurological disorders. Although most conotoxin channel blockers function ...

    Cone snail toxins are well known blockers of voltage-gated sodium channels, a property that is of broad interest in biology and therapeutically in treating neuropathic pain and neurological disorders. Although most conotoxin channel blockers function by direct binding to a channel and disrupting its normal ion movement, conotoxin μO§-GVIIJ channel blocking is unique, using both favorable binding interactions with the channel and a direct tether via an intermolecular disulfide bond. Disulfide exchange is possible because conotoxin μO§-GVIIJ contains anS-cysteinylated Cys-24 residue that is capable of exchanging with a free cysteine thiol on the channel surface. Here, we present the solution structure of an analog of μO§-GVIIJ (GVIIJ[C24S]) and the results of structure-activity studies with synthetic μO§-GVIIJ variants. GVIIJ[C24S] adopts an inhibitor cystine knot structure, with two antiparallel β-strands stabilized by three disulfide bridges. The loop region linking the β-strands (loop 4) presents residue 24 in a configuration where it could bind to the proposed free cysteine of the channel (Cys-910, rat NaV1.2 numbering; at site 8). The structure-activity study shows that three residues (Lys-12, Arg-14, and Tyr-16) located in loop 2 and spatially close to residue 24 were also important for functional activity. We propose that the interaction of μO§-GVIIJ with the channel depends on not only disulfide tethering via Cys-24 to a free cysteine at site 8 on the channel but also the participation of key residues of μO§-GVIIJ on a distinct surface of the peptide.


    Organizational Affiliation

    From the Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia, the Department of Biology, University of Utah, Salt Lake City, Utah 84112.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
conotoxin-muOxi-GVIIJ
A
35Conus geographusMutation(s): 0 
Find proteins for X5IWS1 (Conus geographus)
Go to UniProtKB:  X5IWS1
Small Molecules
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
HYP
Query on HYP
A
L-PEPTIDE LINKINGC5 H9 N O3PRO
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2016-02-03
    Type: Initial release
  • Version 1.1: 2016-03-23
    Type: Database references
  • Version 1.2: 2016-04-13
    Type: Database references