2N2X

Solution structure of [GlyB24,B27-B29 triazole cross-linked]-insulin analogue at pH 1.9


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 30 
  • Selection Criteria: target function 

wwPDB Validation 3D Report Full Report


This is version 1.0 of the entry. See complete history

Literature

Rational steering of insulin binding specificity by intra-chain chemical crosslinking.

Vikova, J.Collinsova, M.Kletvikova, E.Budesinsky, M.Kaplan, V.Zakova, L.Veverka, V.Hexnerova, R.Avino, R.J.Strakova, J.Selicharova, I.Vanek, V.Wright, D.W.Watson, C.J.Turkenburg, J.P.Brzozowski, A.M.Jiracek, J.

(2016) Sci Rep 6: 19431-19431

  • DOI: 10.1038/srep19431
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to ...

    Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26-B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone's B-chain C-terminus for its IR-B specificity.


    Organizational Affiliation

    Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Insulin A chain
A
21Homo sapiensMutation(s): 0 
Gene Names: INS
Find proteins for P01308 (Homo sapiens)
Go to Gene View: INS
Go to UniProtKB:  P01308
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Insulin B chain
B
30Homo sapiensMutation(s): 3 
Gene Names: INS
Find proteins for P01308 (Homo sapiens)
Go to Gene View: INS
Go to UniProtKB:  P01308
Small Molecules
Modified Residues  2 Unique
IDChainsTypeFormula2D DiagramParent
HIX
Query on HIX
B
L-PEPTIDE LINKINGC5 H8 N4 O2ALA
NVA
Query on NVA
B
L-PEPTIDE LINKINGC5 H11 N O2VAL
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 30 
  • Selection Criteria: target function 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2016-02-03
    Type: Initial release