2MDR

Solution structure of the third double-stranded RNA-binding domain (dsRBD3) of human adenosine-deaminase ADAR1


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1.

Barraud, P.Banerjee, S.Mohamed, W.I.Jantsch, M.F.Allain, F.H.

(2014) Proc.Natl.Acad.Sci.USA 111: E1852-E1861

  • DOI: 10.1073/pnas.1323698111

  • PubMed Abstract: 
  • The human RNA-editing enzyme adenosine deaminase acting on RNA (ADAR1) carries a unique nuclear localization signal (NLS) that overlaps one of its double-stranded RNA-binding domains (dsRBDs). This dsRBD-NLS is recognized by the nuclear import recept ...

    The human RNA-editing enzyme adenosine deaminase acting on RNA (ADAR1) carries a unique nuclear localization signal (NLS) that overlaps one of its double-stranded RNA-binding domains (dsRBDs). This dsRBD-NLS is recognized by the nuclear import receptor transportin 1 (Trn1; also called karyopherin-β2) in an RNA-sensitive manner. Most Trn1 cargos bear a well-characterized proline-tyrosine-NLS, which is missing from the dsRBD-NLS. Here, we report the structure of the dsRBD-NLS, which reveals an unusual dsRBD fold extended by an additional N-terminal α-helix that brings the N- and C-terminal flanking regions in close proximity. We demonstrate experimentally that the atypical ADAR1-NLS is bimodular and is formed by the combination of the two flexible fragments flanking the folded domain. The intervening dsRBD acts only as an RNA-sensing scaffold, allowing the two NLS modules to be properly positioned for interacting with Trn1. We also provide a structural model showing how Trn1 can recognize the dsRBD-NLS and how dsRNA binding can interfere with Trn1 binding.


    Organizational Affiliation

    Institute of Molecular Biology and Biophysics, Eidgenössiche Technische Hochschule Zürich, CH-8093 Zürich, Switzerland.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Double-stranded RNA-specific adenosine deaminase
A
113Homo sapiensMutation(s): 0 
Gene Names: ADAR (ADAR1, DSRAD, G1P1, IFI4)
EC: 3.5.4.37
Find proteins for P55265 (Homo sapiens)
Go to Gene View: ADAR
Go to UniProtKB:  P55265
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2014-04-30
    Type: Initial release
  • Version 1.1: 2014-06-04
    Type: Database references