2LZ6

Distinct ubiquitin binding modes exhibited by sh3 domains: molecular determinants and functional implications


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 10 
  • Selection Criteria: target function 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Distinct Ubiquitin Binding Modes Exhibited by SH3 Domains: Molecular Determinants and Functional Implications.

Ortega Roldan, J.L.Casares, S.Ringkjbing Jensen, M.Cardenes, N.Bravo, J.Blackledge, M.Azuaga, A.I.van Nuland, N.A.

(2013) PLoS One 8: e73018-e73018

  • DOI: 10.1371/journal.pone.0073018
  • Primary Citation of Related Structures:  
    2MCN, 2LZ6, 2YDL

  • PubMed Abstract: 
  • SH3 domains constitute a new type of ubiquitin-binding domains. We previously showed that the third SH3 domain (SH3-C) of CD2AP binds ubiquitin in an alternative orientation. We have determined the structure of the complex between first CD2AP SH3 domain and ubiquitin and performed a structural and mutational analysis to decipher the determinants of the SH3-C binding mode to ubiquitin ...

    SH3 domains constitute a new type of ubiquitin-binding domains. We previously showed that the third SH3 domain (SH3-C) of CD2AP binds ubiquitin in an alternative orientation. We have determined the structure of the complex between first CD2AP SH3 domain and ubiquitin and performed a structural and mutational analysis to decipher the determinants of the SH3-C binding mode to ubiquitin. We found that the Phe-to-Tyr mutation in CD2AP and in the homologous CIN85 SH3-C domain does not abrogate ubiquitin binding, in contrast to previous hypothesis and our findings for the first two CD2AP SH3 domains. The similar alternative binding mode of the SH3-C domains of these related adaptor proteins is characterised by a higher affinity to C-terminal extended ubiquitin molecules. We conclude that CD2AP/CIN85 SH3-C domain interaction with ubiquitin constitutes a new ubiquitin-binding mode involved in a different cellular function and thus changes the previously established mechanism of EGF-dependent CD2AP/CIN85 mono-ubiquitination.


    Organizational Affiliation

    Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain ; Department of Biochemistry, University of Oxford, Oxford, United Kingdom.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
UbiquitinA76Homo sapiensMutation(s): 0 
Gene Names: UBC
UniProt & NIH Common Fund Data Resources
Find proteins for P0CG48 (Homo sapiens)
Explore P0CG48 
Go to UniProtKB:  P0CG48
PHAROS:  P0CG48
Protein Feature View
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
CD2-associated proteinB64Mus musculusMutation(s): 0 
Gene Names: Cd2apMets1
UniProt & NIH Common Fund Data Resources
Find proteins for Q9JLQ0 (Mus musculus)
Explore Q9JLQ0 
Go to UniProtKB:  Q9JLQ0
IMPC:  MGI:1330281
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 10 
  • Selection Criteria: target function 
  • OLDERADO: 2LZ6 Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2013-10-02
    Type: Initial release
  • Version 1.1: 2016-04-27
    Changes: Structure summary