Solution structure of CaM complexed to DRP1p

Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 
  • Conformers Submitted: 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report

This is version 1.3 of the entry. See complete history


Accurate solution structures of proteins from X-ray data and a minimal set of NMR data: calmodulin-peptide complexes as examples.

Bertini, I.Kursula, P.Luchinat, C.Parigi, G.Vahokoski, J.Wilmanns, M.Yuan, J.

(2009) J Am Chem Soc 131: 5134-5144

  • DOI: https://doi.org/10.1021/ja8080764
  • Primary Citation of Related Structures:  
    2K0J, 2K61

  • PubMed Abstract: 

    A strategy for the accurate determination of protein solution structures starting from X-ray data and a minimal set of NMR data is proposed and successfully applied to two complexes of calmodulin (CaM) with target peptides not previously described. Its implementation in the present case is based on the use of lanthanide ions as substitutes for calcium in one of the four calcium binding sites of CaM and the collection of pseudocontact shift (pcs) and residual dipolar coupling (rdc) restraints induced by the paramagnetic metals. Starting from the crystal structures, new structural models are calculated that are in excellent agreement with the paramagnetic restraints and differ significantly from the starting crystal structures. In particular, in both complexes, a change in orientation of the first helix of the N-terminal CaM domain and of the whole C-terminal domain is observed. The simultaneous use of paramagnetic pcs and rdc restraints has the following crucial advantages: (i) it allows one to assess the possible presence of interdomain conformational freedom, which cannot be detected if the rdc values are derived from external orienting media; (ii) in the absence of significant conformational freedom, the global orientation tensor can be independently and precisely determined from pcs values, which are less sensitive than rdc values to the presence of local structural inaccuracies, and therefore (iii) the relative rearrangement of a domain or a secondary structure element with respect to the metal-bearing domain can be detected.

  • Organizational Affiliation

    Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy. ivanobertini@cerm.unifi.it

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
calmodulin148Homo sapiensMutation(s): 1 
UniProt & NIH Common Fund Data Resources
Find proteins for P0DP23 (Homo sapiens)
Explore P0DP23 
Go to UniProtKB:  P0DP23
GTEx:  ENSG00000198668 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0DP23
Sequence Annotations
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 
  • Conformers Submitted: 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-03-10
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2021-10-20
    Changes: Data collection, Database references, Derived calculations
  • Version 1.3: 2024-05-29
    Changes: Data collection