2BJR

Crystal structure of the nematode sperm cell motility protein MFP2B


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.223 
  • R-Value Work: 0.184 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structure of Mfp2 and its Function in Enhancing Msp Polymerization in Ascaris Sperm Amoeboid Motility

Grant, R.P.Buttery, S.M.Ekman, G.C.Roberts, T.M.Stewart, M.

(2005) J.Mol.Biol. 347: 583

  • DOI: 10.1016/j.jmb.2005.01.054
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The simplicity and specialization of the cell motility machinery of Ascaris sperm provides a powerful system in which to probe the basic molecular mechanism of amoeboid cell motility. Although Ascaris sperm locomotion closely resembles that seen in m ...

    The simplicity and specialization of the cell motility machinery of Ascaris sperm provides a powerful system in which to probe the basic molecular mechanism of amoeboid cell motility. Although Ascaris sperm locomotion closely resembles that seen in many other types of crawling cell, movement is generated by modulation of a cytoskeleton based on the major sperm protein (MSP) rather than the actin present in other cell types. The Ascaris motility machinery can be studied conveniently in a cell-free in vitro system based on the movement of plasma membrane vesicles by fibres constructed from bundles of MSP filaments. In addition to ATP, MSP and a plasma membrane protein, reconstitution of MSP motility in this cell-free extract requires cytosolic proteins to orchestrate the site-specific assembly and bundling of MSP filaments that generates locomotion. One of these proteins, MFP2, accelerates the rate of movement in this assay. Here, we describe crystal structures of two isoforms of MFP2 and show that both are constructed from two domains that have the same fold based on a novel, compact beta sheet arrangement. Patterns of conservation observed in a structure-based analysis of MFP2 sequences from different nematode species identified regions that may be putative functional interfaces involved both in interactions between MFP2 domains and also with other components of the sperm motility machinery. Analysis of the growth of fibres in vitro in the presence of added MFP2 indicated that MFP2 increases the rate of locomotion by enhancing the effective rate of MSP filament polymerization. This observation, together with the structural data, suggests that MFP2 may function in a manner analogous to formins in actin-based motility.


    Organizational Affiliation

    MRC Laboratory of Molecular Biology, Hills Rd., Cambridge CB2 2QH, UK.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
MFP2B
A, B
368Ascaris suumMutation(s): 0 
Find proteins for Q7YXJ9 (Ascaris suum)
Go to UniProtKB:  Q7YXJ9
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download SDF File 
Download CCD File 
A, B
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
SO4
Query on SO4

Download SDF File 
Download CCD File 
A
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
MSE
Query on MSE
A, B
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.223 
  • R-Value Work: 0.184 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 87.513α = 90.00
b = 52.954β = 99.17
c = 95.542γ = 90.00
Software Package:
Software NamePurpose
REFMACrefinement
SOLVEphasing
SCALAdata scaling
MOSFLMdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2005-03-16
    Type: Initial release
  • Version 1.1: 2011-05-08
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance