2B77

Human transthyretin (TTR) complexed with Diflunisal analogues- TTR.2',4'-DICHLORO-4-HYDROXY-1,1'-BIPHENYL-3-CARBOXYLIC ACID


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • R-Value Free: 0.238 
  • R-Value Work: 0.208 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Diflunisal analogues stabilize the native state of transthyretin. Potent inhibition of amyloidogenesis.

Adamski-Werner, S.L.Palaninathan, S.K.Sacchettini, J.C.Kelly, J.W.

(2004) J.Med.Chem. 47: 355-374

  • DOI: 10.1021/jm030347n
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Analogues of diflunisal, an FDA-approved nonsteroidal antiinflammatory drug (NSAID), were synthesized and evaluated as inhibitors of transthyretin (TTR) aggregation, including amyloid fibril formation. High inhibitory activity was observed for 26 of ...

    Analogues of diflunisal, an FDA-approved nonsteroidal antiinflammatory drug (NSAID), were synthesized and evaluated as inhibitors of transthyretin (TTR) aggregation, including amyloid fibril formation. High inhibitory activity was observed for 26 of the compounds. Of those, eight exhibited excellent binding selectivity for TTR in human plasma (binding stoichiometry >0.50, with a theoretical maximum of 2.0 inhibitors bound per TTR tetramer). Biophysical studies reveal that these eight inhibitors dramatically slow tetramer dissociation (the rate-determining step of amyloidogenesis) over a duration of 168 h. This appears to be achieved through ground-state stabilization, which raises the kinetic barrier for tetramer dissociation. Kinetic stabilization of WT TTR by these eight inhibitors is further substantiated by the decreasing rate of amyloid fibril formation as a function of increasing inhibitor concentration (pH 4.4). X-ray cocrystal structures of the TTR.18(2) and TTR.20(2) complexes reveal that 18 and 20 bind in opposite orientations in the TTR binding site. Moving the fluorines from the meta positions in 18 to the ortho positions in 20 reverses the binding orientation, allowing the hydrophilic aromatic ring of 20 to orient in the outer binding pocket where the carboxylate engages in favorable electrostatic interactions with the epsilon-ammonium groups of Lys 15 and 15'. The hydrophilic aryl ring of 18 occupies the inner binding pocket, with the carboxylate positioned to hydrogen bond to the serine 117 and 117' residues. Diflunisal itself appears to occupy both orientations based on the electron density in the TTR.1(2) structure. Structure-activity relationships reveal that para-carboxylate substitution on the hydrophilic ring and dihalogen substitution on the hydrophobic ring afford the most active TTR amyloid inhibitors.


    Organizational Affiliation

    The Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institiute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Transthyretin
A, B
127Homo sapiensMutation(s): 0 
Gene Names: TTR (PALB)
Find proteins for P02766 (Homo sapiens)
Go to Gene View: TTR
Go to UniProtKB:  P02766
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
3CA
Query on 3CA

Download SDF File 
Download CCD File 
A, B
2',4'-DICHLORO-4-HYDROXY-1,1'-BIPHENYL-3-CARBOXYLIC ACID
C13 H8 Cl2 O3
SKAFZYDMDHPPJM-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • R-Value Free: 0.238 
  • R-Value Work: 0.208 
  • Space Group: P 21 21 2
Unit Cell:
Length (Å)Angle (°)
a = 43.215α = 90.00
b = 85.082β = 90.00
c = 64.401γ = 90.00
Software Package:
Software NamePurpose
REFMACrefinement
AMoREphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2005-10-11
    Type: Initial release
  • Version 1.1: 2008-05-01
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Derived calculations, Version format compliance
  • Version 1.3: 2017-10-11
    Type: Refinement description