1VLB

STRUCTURE REFINEMENT OF THE ALDEHYDE OXIDOREDUCTASE FROM DESULFOVIBRIO GIGAS AT 1.28 A


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.28 Å
  • R-Value Free: 0.193 
  • R-Value Work: 0.145 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structure refinement of the aldehyde oxidoreductase from Desulfovibrio gigas (MOP) at 1.28 A

Rebelo, J.M.Dias, J.M.Huber, R.Moura, J.J.G.Romao, M.J.

(2001) J.Biol.Inorg.Chem. 6: 791-800

  • DOI: 10.1007/s007750100255

  • PubMed Abstract: 
  • The sulfate-reducing bacterium aldehyde oxidoreductase from Desulfovibrio gigas (MOP) is a member of the xanthine oxidase family of enzymes. It has 907 residues on a single polypeptide chain, a molybdopterin cytosine dinucleotide (MCD) cofactor and t ...

    The sulfate-reducing bacterium aldehyde oxidoreductase from Desulfovibrio gigas (MOP) is a member of the xanthine oxidase family of enzymes. It has 907 residues on a single polypeptide chain, a molybdopterin cytosine dinucleotide (MCD) cofactor and two [2Fe-2S] iron-sulfur clusters. Synchrotron data to almost atomic resolution were collected for improved cryo-cooled crystals of this enzyme in the oxidized form. The cell constants of a=b=141.78 A and c=160.87 A are about 2% shorter than those of room temperature data, yielding 233,755 unique reflections in space group P6(1)22, at 1.28 A resolution. Throughout the entire refinement the full gradient least-squares method was used, leading to a final R factor of 14.5 and Rfree factor of 19.3 (4sigma cut-off) with "riding" H-atoms at their calculated positions. The model contains 8146 non-hydrogen atoms described by anisotropic displacement parameters with an observations/parameters ratio of 4.4. It includes alternate conformations for 17 amino acid residues. At 1.28 A resolution, three Cl- and two Mg2+ ions from the crystallization solution were clearly identified. With the exception of one Cl- which is buried and 8 A distant from the Mo atom, the other ions are close to the molecular surface and may contribute to crystal packing. The overall structure has not changed in comparison to the lower resolution model apart from local corrections that included some loop adjustments and alternate side-chain conformations. Based on the estimated errors of bond distances obtained by blocked least-squares matrix inversion, a more detailed analysis of the three redox centres was possible. For the MCD cofactor, the resulting geometric parameters confirmed its reduction state as a tetrahydropterin. At the Mo centre, estimated corrections calculated for the Fourier ripples artefact are very small when compared to the experimental associated errors, supporting the suggestion that the fifth ligand is a water molecule rather than a hydroxide. Concerning the two iron-sulfur centres, asymmetry in the Fe-S distances as well as differences in the pattern of NH.S hydrogen-bonding interactions was observed, which influences the electron distribution upon reduction and causes non-equivalence of the individual Fe atoms in each cluster.


    Related Citations: 
    • Structure of the Aldehyde Oxido-reductase from Desulfovibrio gigas at 2.25 A Resolution: A Member of the Xanthine Oxidase Protein Family
      Romao, M.J.,Archer, M.,Moura, I.,Moura, J.J.G.,LeGall, J.,Engh, R.,Schneider, M.,Hof, P.,Huber, R.
      (1995) Science 270: 1170
    • A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes
      Huber, R.,Hof, P.,Duarte, R.O.,Moura, J.J.G.,Moura, I.,Liu, M.-Y.,LeGall, J.,Hille, R.,Archer, M.,Romao, M.J.
      (1996) Proc.Natl.Acad.Sci.USA 93: 8846


    Organizational Affiliation

    Departamento de QuĂ­mica, CQFB, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2825-114 Monte da Caparica, Portugal.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
ALDEHYDE OXIDOREDUCTASE
A
907Desulfovibrio gigasMutation(s): 0 
Gene Names: mop
EC: 1.2.99.7
Find proteins for Q46509 (Desulfovibrio gigas)
Go to UniProtKB:  Q46509
Small Molecules
Ligands 5 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CL
Query on CL

Download SDF File 
Download CCD File 
A
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
FES
Query on FES

Download SDF File 
Download CCD File 
A
FE2/S2 (INORGANIC) CLUSTER
Fe2 S2
NIXDOXVAJZFRNF-UHFFFAOYSA-N
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
IPA
Query on IPA

Download SDF File 
Download CCD File 
A
ISOPROPYL ALCOHOL
2-PROPANOL
C3 H8 O
KFZMGEQAYNKOFK-UHFFFAOYSA-N
 Ligand Interaction
PCD
Query on PCD

Download SDF File 
Download CCD File 
A
(MOLYBDOPTERIN-CYTOSINE DINUCLEOTIDE-S,S)-DIOXO-AQUA-MOLYBDENUM(V)
MOLYBDENUM COFACTOR; MOCO
C19 H26 Mo N8 O16 P2 S2
YEBYDVFRFUQMER-NBXMTLLYDD
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.28 Å
  • R-Value Free: 0.193 
  • R-Value Work: 0.145 
  • Space Group: P 61 2 2
Unit Cell:
Length (Å)Angle (°)
a = 141.780α = 90.00
b = 141.780β = 90.00
c = 160.870γ = 120.00
Software Package:
Software NamePurpose
X-PLORmodel building
SHELXL-97refinement
X-PLORphasing
SCALEPACKdata scaling
DENZOdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2004-07-27
    Type: Initial release
  • Version 1.1: 2008-04-26
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance