Primary Citation of Related Structures:   1P4D
PubMed Abstract: 
Conjugative plasmid transfer between bacteria disseminates antibiotic resistance and diversifies prokaryotic genomes. Relaxases, proteins essential for conjugation, cleave one plasmid strand sequence specifically prior to transfer. Cleavage occurs through a Mg(2+)-dependent transesterification involving a tyrosyl hydroxyl and a DNA phosphate ...
Conjugative plasmid transfer between bacteria disseminates antibiotic resistance and diversifies prokaryotic genomes. Relaxases, proteins essential for conjugation, cleave one plasmid strand sequence specifically prior to transfer. Cleavage occurs through a Mg(2+)-dependent transesterification involving a tyrosyl hydroxyl and a DNA phosphate. The structure of the F plasmid TraI relaxase domain, described here, is a five-strand beta sheet flanked by alpha helices. The protein resembles replication initiator protein AAV-5 Rep but is circularly permuted, yielding a different topology. The beta sheet forms a binding cleft lined with neutral, nonaromatic residues, unlike most single-stranded DNA binding proteins which use aromatic and charged residues. The cleft contains depressions, suggesting base recognition occurs in a knob-into-hole fashion. Unlike most nucleases, three histidines but no acidic residues coordinate a Mg(2+) located near the catalytic tyrosine. The full positive charge on the Mg(2+) and the architecture of the active site suggest multiple roles for Mg(2+) in DNA cleavage.
Related Citations: 
Subdomain organization and catalytic residues of the F factor TraI relaxase domain Street, L.M., Harley, M.J., Stern, J.C., Larkin, C., Williams, S.L., Miller, D.L., Dohm, J.A., Rodgers, M.E., Schildbach, J.F. (2003) Biochim Biophys Acta 1646: 86
Organizational Affiliation: 
Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.