Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases.
Chen, Z., Li, Y., Chen, E., Hall, D.L., Darke, P.L., Culberson, C., Shafer, J.A., Kuo, L.C.(1994) J Biol Chem 269: 26344-26348
- PubMed: 7929352 
- Primary Citation of Related Structures:  
1HSG, 1HSH, 1HSI - PubMed Abstract: 
L-735,524 is a potent, orally bioavailable inhibitor of human immunodeficiency virus (HIV) protease currently in a Phase II clinical trial. We report here the three-dimensional structure of L-735,524 complexed to HIV-2 protease at 1.9-A resolution, as well as the structure of the native HIV-2 protease at 2.5-A resolution. The structure of HIV-2 protease is found to be essentially identical to that of HIV-1 protease. In the crystal lattice of the HIV-2 protease complexed with L-735,524, the inhibitor is chelated to the active site of the homodimeric enzyme in one orientation. This feature allows an unambiguous assignment of protein-ligand interactions from the electron density map. Both Fourier and difference Fourier maps reveal clearly the closure of the flap domains of the protease upon L-735,524 binding. Specific interactions between the enzyme and the inhibitor include the hydroxy group of the hydroxyaminopentane amide moiety of L-735,524 ligating to the carboxyl groups of the essential Asp-25 and Asp-25' enzymic residues and the amide oxygens of the inhibitor hydrogen bonding to the backbone amide nitrogen of Ile-50 and Ile-50' via an intervening water molecule. A second bridging water molecule is found between the amide nitrogen N2 of L-735,524 and the carboxyl oxygen of Asp-29'. Although other hydrogen bonds also add to binding, an equally significant contribution to affinity arises from hydrophobic interactions between the protease and the inhibitor throughout the pseudo-symmetric S1/S1', S2/S2', and S3/S3' regions of the enzyme. Except for its pyridine ring, all lipophilic moieties (t-butyl, indanyl, benzyl, and piperidyl) of L-735,524 are rigidly defined in the active site.
Organizational Affiliation: 
Department of Biological Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486.