Experimental Data Snapshot

  • Resolution: 1.50 Å
  • R-Value Free: 0.200 
  • R-Value Work: 0.181 
  • R-Value Observed: 0.181 

wwPDB Validation   3D Report Full Report

This is version 1.4 of the entry. See complete history


Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants.

Yue, Q.K.Kass, I.J.Sampson, N.S.Vrielink, A.

(1999) Biochemistry 38: 4277-4286

  • DOI: https://doi.org/10.1021/bi982497j
  • Primary Citation of Related Structures:  
    1B4V, 1B8S, 1CBO, 1CC2

  • PubMed Abstract: 

    Cholesterol oxidase is a monomeric flavoenzyme which catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The enzyme interacts with lipid bilayers in order to bind its steroid substrate. The X-ray structure of the enzyme from Brevibacterium sterolicum revealed two loops, comprising residues 78-87 and residues 433-436, which act as a lid over the active site and facilitate binding of the substrate [Vrielink et al. (1991) J. Mol. Biol. 219, 533-554; Li et al. (1993) Biochemistry 32, 11507-11515]. It was postulated that these loops must open, forming a hydrophobic channel between the membrane and the active site of the protein and thus sequestering the cholesterol substrate from the aqueous environment. Here we describe the three-dimensional structure of the homologous enzyme from Streptomyces refined to 1.5 A resolution. Structural comparisons to the enzyme from B. sterolicum reveal significant conformational differences in these loop regions; in particular, a region of the loop comprising residues 78-87 adopts a small amphipathic helical turn with hydrophobic residues directed toward the active site cavity and hydrophilic residues directed toward the external surface of the molecule. It seems reasonable that this increased rigidity reduces the entropy loss that occurs upon binding substrate. Consequently, the Streptomyces enzyme is a more efficient catalyst. In addition, we have determined the structures of three active site mutants which have significantly reduced activity for either the oxidation (His447Asn and His447Gln) or the isomerization (Glu361Gln). Our structural and kinetic data indicate that His447 and Glu361 act as general base catalysts in association with conserved water H2O541 and Asn485. The His447, Glu361, H2O541, and Asn485 hydrogen bond network is conserved among other oxidoreductases. This catalytic tetrad appears to be a structural motif that occurs in flavoenzymes that catalyze the oxidation of unactivated alcohols.

  • Organizational Affiliation

    Biochemistry Department, McGill University, Montréal, Québec, Canada.

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PROTEIN (CHOLESTEROL OXIDASE)504Streptomyces sp.Mutation(s): 0 
Membrane Entity: Yes 
Find proteins for P12676 (Streptomyces sp. (strain SA-COO))
Explore P12676 
Go to UniProtKB:  P12676
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP12676
Sequence Annotations
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
Query on FAD

Download Ideal Coordinates CCD File 
C27 H33 N9 O15 P2
Experimental Data & Validation

Experimental Data

  • Resolution: 1.50 Å
  • R-Value Free: 0.200 
  • R-Value Work: 0.181 
  • R-Value Observed: 0.181 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 51.304α = 90
b = 72.964β = 105.09
c = 63.022γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1999-01-06
    Type: Initial release
  • Version 1.1: 2007-10-16
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-10-04
    Changes: Refinement description
  • Version 1.4: 2023-08-09
    Changes: Data collection, Database references, Derived calculations, Refinement description