Design of potent and selective human cathepsin K inhibitors that span the active site.
Thompson, S.K., Halbert, S.M., Bossard, M.J., Tomaszek, T.A., Levy, M.A., Zhao, B., Smith, W.W., Abdel-Meguid, S.S., Janson, C.A., D'Alessio, K.J., McQueney, M.S., Amegadzie, B.Y., Hanning, C.R., DesJarlais, R.L., Briand, J., Sarkar, S.K., Huddleston, M.J., Ijames, C.F., Carr, S.A., Garnes, K.T., Shu, A., Heys, J.R., Bradbeer, J., Zembryki, D., Lee-Rykaczewski, L., James, I.E., Lark, M.W., Drake, F.H., Gowen, M., Gleason, J.G., Veber, D.F.(1997) Proc Natl Acad Sci U S A 94: 14249-14254
- PubMed: 9405598 
- DOI: https://doi.org/10.1073/pnas.94.26.14249
- Primary Citation of Related Structures:  
1AYU, 1AYV, 1AYW - PubMed Abstract: 
Potent and selective active-site-spanning inhibitors have been designed for cathepsin K, a cysteine protease unique to osteoclasts. They act by mechanisms that involve tight binding intermediates, potentially on a hydrolytic pathway. X-ray crystallographic, MS, NMR spectroscopic, and kinetic studies of the mechanisms of inhibition indicate that different intermediates or transition states are being represented that are dependent on the conditions of measurement and the specific groups flanking the carbonyl in the inhibitor ...