1ZK5

Escherichia coli F17fG lectin domain complex with N-acetylglucosamine


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.201 
  • R-Value Work: 0.185 
  • R-Value Observed: 0.187 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Impact of natural variation in bacterial F17G adhesins on crystallization behaviour.

Buts, L.Wellens, A.Van Molle, I.Wyns, L.Loris, R.Lahmann, M.Oscarson, S.De Greve, H.Bouckaert, J.

(2005) Acta Crystallogr D Biol Crystallogr 61: 1149-1159

  • DOI: 10.1107/S0907444905017038
  • Primary Citation of Related Structures:  
    1ZK5, 1ZPL, 2BS8, 2BS7, 2BSB, 2BSC

  • PubMed Abstract: 
  • Since the introduction of structural genomics, the protein has been recognized as the most important variable in crystallization. Recent strategies to modify a protein to improve crystal quality have included rationally engineered point mutations, tr ...

    Since the introduction of structural genomics, the protein has been recognized as the most important variable in crystallization. Recent strategies to modify a protein to improve crystal quality have included rationally engineered point mutations, truncations, deletions and fusions. Five naturally occurring variants, differing in 1-18 amino acids, of the 177-residue lectin domain of the F17G fimbrial adhesin were expressed and purified in identical ways. For four out of the five variants crystals were obtained, mostly in non-isomorphous space groups, with diffraction limits ranging between 2.4 and 1.1 A resolution. A comparative analysis of the crystal-packing contacts revealed that the variable amino acids are often involved in lattice contacts and a single amino-acid substitution can suffice to radically change crystal packing. A statistical approach proved reliable to estimate the compatibilities of the variant sequences with the observed crystal forms. In conclusion, natural variation, universally present within prokaryotic species, is a valuable genetic resource that can be favourably employed to enhance the crystallization success rate with considerably less effort than other strategies.


    Organizational Affiliation

    Laboratorium voor Ultrastructuur, Vlaams Interuniversitair Instituut voor Biotechnologie and Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
F17G adhesin subunitA176Escherichia coliMutation(s): 0 
Gene Names: 377F17Gf17fG
Find proteins for Q9RH91 (Escherichia coli)
Explore Q9RH91 
Go to UniProtKB:  Q9RH91
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NAG
Query on NAG

Download CCD File 
A
2-acetamido-2-deoxy-beta-D-glucopyranose
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.201 
  • R-Value Work: 0.185 
  • R-Value Observed: 0.187 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 73.715α = 90
b = 41.959β = 97.542
c = 53.422γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing
CNSrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2006-05-02
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.3: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Data collection, Derived calculations, Structure summary