1ZGU

Solution structure of the human Mms2-Ubiquitin complex


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural Basis for Non-Covalent Interaction Between Ubiquitin and the Ubiquitin Conjugating Enzyme Variant Human MMS2.

Lewis, M.J.Saltibus, L.F.Hau, D.D.Xiao, W.Spyracopoulos, L.

(2006) J Biomol NMR 34: 89-100

  • DOI: 10.1007/s10858-005-5583-6
  • Primary Citation of Related Structures:  
    1ZGU

  • PubMed Abstract: 
  • Modification of proteins by post-translational covalent attachment of a single, or chain, of ubiquitin molecules serves as a signaling mechanism for a number of regulatory functions in eukaryotic cells. For example, proteins tagged with lysine-63 lin ...

    Modification of proteins by post-translational covalent attachment of a single, or chain, of ubiquitin molecules serves as a signaling mechanism for a number of regulatory functions in eukaryotic cells. For example, proteins tagged with lysine-63 linked polyubiquitin chains are involved in error-free DNA repair. The catalysis of lysine-63 linked polyubiquitin chains involves the sequential activity of three enzymes (E1, E2, and E3) that ultimately transfer a ubiquitin thiolester intermediate to a protein target. The E2 responsible for catalysis of lysine-63 linked polyubiquitination is a protein heterodimer consisting of a canonical E2 known as Ubc13, and an E2-like protein, or ubiquitin conjugating enzyme variant (UEV), known as Mms2. We have determined the solution structure of the complex formed by human Mms2 and ubiquitin using high resolution, solution state nuclear magnetic resonance (NMR) spectroscopy. The structure of the Mms2-Ub complex provides important insights into the molecular basis underlying the catalysis of lysine-63 linked polyubiquitin chains.


    Organizational Affiliation

    Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Ubiquitin-conjugating enzyme E2 variant 2A139Homo sapiensMutation(s): 0 
Gene Names: UBE2V2MMS2UEV2
Find proteins for Q15819 (Homo sapiens)
Explore Q15819 
Go to UniProtKB:  Q15819
NIH Common Fund Data Resources
PHAROS  Q15819
Protein Feature View
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
UbiquitinB76Homo sapiensMutation(s): 1 
Gene Names: UBC
Find proteins for P0CG48 (Homo sapiens)
Explore P0CG48 
Go to UniProtKB:  P0CG48
NIH Common Fund Data Resources
PHAROS  P0CG48
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 
  • OLDERADO: 1ZGU Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2006-04-04
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance