1ZAC

N-DOMAIN OF TROPONIN C FROM CHICKEN SKELETAL MUSCLE, NMR, MINIMIZED AVERAGE STRUCTURE


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 
  • Selection Criteria: LEAST RESTRAINT VIOLATION 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Low-temperature-induced structural changes in the Apo regulatory domain of skeletal muscle troponin C.

Tsuda, S.Miura, A.Gagne, S.M.Spyracopoulos, L.Sykes, B.D.

(1999) Biochemistry 38: 5693-5700

  • DOI: 10.1021/bi982936e
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Contractile activity of skeletal muscle is triggered by a Ca2+-induced "opening" of the regulatory N-domain of troponin C (apo-NTnC residues 1-90). This structural transition has become a paradigm for large-scale conformational changes that affect th ...

    Contractile activity of skeletal muscle is triggered by a Ca2+-induced "opening" of the regulatory N-domain of troponin C (apo-NTnC residues 1-90). This structural transition has become a paradigm for large-scale conformational changes that affect the interaction between proteins. The regulatory domain is comprised of two basic structural elements: one contributed by the N-, A-, and D-helices (NAD unit) and the other by the B- and C-helices (BC unit). The Ca2+-induced opening is characterized by a movement of the BC unit away from the NAD unit with a concomitant change in conformation at two hinges (Glu41 and Val65) of the BC unit. To examine the effect of low temperatures on this Ca2+-induced structural change and the implications for contractile regulation, we have examined nuclear magnetic resonance (NMR) spectral changes of apo-NTnC upon decreasing the temperature from 30 to 4 degrees C. In addition, we have determined the solution structure of apo-NTnC at 4 degrees C using multinuclear multidimensional NMR spectroscopy. Decreasing temperatures induce a decrease in the rates and amplitudes of pico to nanosecond time scale backbone dynamics and an increase in alpha-helical content for the terminal helices of apo-NTnC. In addition, chemical shift changes for the Halpha resonances of Val65 and Asp66, the hinge residues of the BC, unit were observed. Compared to the solution structure of apo-NTnC determined at 30 degrees C, the BC unit packs more tightly against the NAD unit in the solution structure determined at 4 degrees C. Concomitant with the tighter packing of the BC and NAD structural units, a decrease in the total exposed hydrophobic surface area is observed. The results have broad implications relative to structure determination of proteins in the presence of large domain movements, and help to elucidate the relevance of structures determined under different conditions of physical state and temperature, reflecting forces ranging from crystal packing to solution dynamics.


    Related Citations: 
    • Low Temperature Effect on Dynamics of Apo N-Domain of Troponin C
      Tsuda, S.,Gagne, S.M.,Spyracopoulos, L.,Sykes, B.D.
      () TO BE PUBLISHED --: --


    Organizational Affiliation

    Bioscience and Chemistry Division, Hokkaido National Industrial Research Institute (HNIRI), Sapporo, Japan. tsuda@hniri.go.jp




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
TROPONIN-C
A
90Gallus gallusMutation(s): 0 
Gene Names: TNNC2
Find proteins for P02588 (Gallus gallus)
Go to Gene View: TNNC2
Go to UniProtKB:  P02588
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 
  • Selection Criteria: LEAST RESTRAINT VIOLATION 
Software Package:
Software NamePurpose
X-PLORphasing
X-PLORrefinement
X-PLORmodel building

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1998-11-11
    Type: Initial release
  • Version 1.1: 2008-03-24
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance