1WCH

Crystal structure of PTPL1 human tyrosine phosphatase mutated in colorectal cancer - evidence for a second phosphotyrosine substrate recognition pocket


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.204 
  • R-Value Work: 0.177 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Crystal Structure of Ptpl1/Fap-1 Human Tyrosine Phosphatase Mutated in Colorectal Cancer: Eveidence for a Second Phosphotyrosine Substrate Recognition Pocket

Villa, F.Deak, M.Bloomberg, G.B.Alessi, D.R.Van Aalten, D.M.F.

(2005) J.Biol.Chem. 280: 8180

  • DOI: 10.1074/jbc.M412211200

  • PubMed Abstract: 
  • Protein-tyrosine phosphatase-L1 (PTPL1, also known as FAP-1, PTP1E, PTP-BAS, and PTPN13) is mutated in a significant number of colorectal tumors and may play a role in down-regulating signaling responses mediated by phosphatidylinositol 3-kinase, alt ...

    Protein-tyrosine phosphatase-L1 (PTPL1, also known as FAP-1, PTP1E, PTP-BAS, and PTPN13) is mutated in a significant number of colorectal tumors and may play a role in down-regulating signaling responses mediated by phosphatidylinositol 3-kinase, although the precise substrates are as yet unknown. In this study, we describe a 1.8 A resolution crystal structure of a fully active fragment of PTPL1 encompassing the catalytic domain. PTPL1 adopts the standard PTP fold, albeit with an unusually positioned additional N-terminal helix, and shows an ordered phosphate in the active site. Interestingly, a positively charged pocket is located near the PTPL1 catalytic site, reminiscent of the second phosphotyrosine binding site in PTP1B, which is required to dephosphorylate peptides containing two adjacent phosphotyrosine residues (as occurs for example in the activated insulin receptor). We demonstrate that PTPL1, like PTP1B, interacts with and dephosphorylates a bis-phosphorylated insulin receptor peptide more efficiently than monophosphorylated peptides, indicating that PTPL1 may down-regulate the phosphatidylinositol 3-kinase pathway, by dephosphorylating insulin or growth factor receptors that contain tandem phosphotyrosines. The structure also reveals that four out of five PTPL1 mutations found in colorectal cancers are located on solvent-exposed regions remote from the active site, consistent with these mutants being normally active. In contrast, the fifth mutation, which changes Met-2307 to Thr, is close to the active site cysteine and decreases activity significantly. Our studies provide the first molecular description of the PTPL1 catalytic domain and give new insight into the function of PTPL1.


    Organizational Affiliation

    Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, DD1 5EH, Scotland.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
PROTEIN TYROSINE PHOSPHATASE, NON-RECEPTOR TYPE 13
A
315Homo sapiensMutation(s): 0 
Gene Names: PTPN13 (PNP1, PTP1E, PTPL1)
EC: 3.1.3.48
Find proteins for Q12923 (Homo sapiens)
Go to Gene View: PTPN13
Go to UniProtKB:  Q12923
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
PO4
Query on PO4

Download SDF File 
Download CCD File 
A
PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.204 
  • R-Value Work: 0.177 
  • Space Group: C 1 2 1
Unit Cell:
Length (Å)Angle (°)
a = 99.707α = 90.00
b = 59.193β = 113.05
c = 66.075γ = 90.00
Software Package:
Software NamePurpose
SCALEPACKdata scaling
DENZOdata reduction
CNSrefinement
AMoREphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2004-12-14
    Type: Initial release
  • Version 1.1: 2011-05-08
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance