1UM0

Crystal structure of chorismate synthase complexed with FMN


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.95 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.214 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystal structure of chorismate synthase: a novel FMN-binding protein fold and functional insights

Ahn, H.J.Yoon, H.J.Lee, B.Suh, S.W.

(2004) J Mol Biol 336: 903-915

  • DOI: 10.1016/j.jmb.2003.12.072
  • Primary Citation of Related Structures:  
    1UMF, 1UM0

  • PubMed Abstract: 
  • Chorismate synthase catalyzes the conversion of 5-enolpyruvylshikimate 3-phosphate to chorismate in the shikimate pathway, which represents an attractive target for discovering antimicrobial agents and herbicides. Chorismate serves as a common precur ...

    Chorismate synthase catalyzes the conversion of 5-enolpyruvylshikimate 3-phosphate to chorismate in the shikimate pathway, which represents an attractive target for discovering antimicrobial agents and herbicides. Chorismate serves as a common precursor for the synthesis of aromatic amino acids and many aromatic compounds in microorganisms and plants. Chorismate synthase requires reduced FMN as a cofactor but the catalyzed reaction involves no net redox change. Here, we have determined the crystal structure of chorismate synthase from Helicobacter pylori in both FMN-bound and FMN-free forms. It is a tetrameric enzyme, with each monomer possessing a novel "beta-alpha-beta sandwich fold". Highly conserved regions, including several flexible loops, cluster together around the bound FMN to form the active site. The unique FMN-binding site is formed largely by a single subunit, with a small contribution from a neighboring subunit. The isoalloxazine ring of the bound FMN is significantly non-planar. Our structure illuminates the essential functional roles played by the cofactor.


    Organizational Affiliation

    Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-0742, South Korea.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Chorismate synthaseABCD365Helicobacter pyloriMutation(s): 0 
Gene Names: aroC
EC: 4.2.3.5
Find proteins for P56122 (Helicobacter pylori (strain ATCC 700392 / 26695))
Explore P56122 
Go to UniProtKB:  P56122
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
FMN
Query on FMN

Download CCD File 
A, B, C, D
FLAVIN MONONUCLEOTIDE
C17 H21 N4 O9 P
FVTCRASFADXXNN-SCRDCRAPSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.95 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.214 
  • Space Group: I 4
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 146.686α = 90
b = 146.686β = 90
c = 132.31γ = 90
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
SOLVEphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2004-06-01
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance