1TH0

Structure of human Senp2


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.211 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex

Reverter, D.Lima, C.D.

(2004) Structure 12: 1519-1531

  • DOI: 10.1016/j.str.2004.05.023
  • Primary Citation of Related Structures:  
    1TGZ, 1TH0

  • PubMed Abstract: 
  • Modification of cellular proteins by the ubiquitin-like protein SUMO is essential for nuclear metabolism and cell cycle progression in yeast. X-ray structures of the human Senp2 catalytic protease domain and of a covalent thiohemiacetal transition-state complex obtained between the Senp2 catalytic domain and SUMO-1 revealed details of the respective protease and substrate surfaces utilized in interactions between these two proteins ...

    Modification of cellular proteins by the ubiquitin-like protein SUMO is essential for nuclear metabolism and cell cycle progression in yeast. X-ray structures of the human Senp2 catalytic protease domain and of a covalent thiohemiacetal transition-state complex obtained between the Senp2 catalytic domain and SUMO-1 revealed details of the respective protease and substrate surfaces utilized in interactions between these two proteins. Comparative biochemical and structural analysis between Senp2 and the yeast SUMO protease Ulp1 revealed differential abilities to process SUMO-1, SUMO-2, and SUMO-3 in maturation and deconjugation reactions. Further biochemical characterization of the three SUMO isoforms into which an additional Gly-Gly di-peptide was inserted, or whereby the respective SUMO tails from the three isoforms were swapped, suggests a strict dependence for SUMO isopeptidase activity on residues C-terminal to the conserved Gly-Gly motif and preferred cleavage site for SUMO proteases.


    Organizational Affiliation

    Structural Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Sentrin-specific protease 2A, B226Homo sapiensMutation(s): 0 
Gene Names: SENP2KIAA1331
EC: 3.4.22
UniProt & NIH Common Fund Data Resources
Find proteins for Q9HC62 (Homo sapiens)
Explore Q9HC62 
Go to UniProtKB:  Q9HC62
PHAROS:  Q9HC62
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.211 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 123.237α = 90
b = 59.228β = 111.29
c = 94.015γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
CNSrefinement
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-09-14
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance