Primary Citation of Related Structures:   1RT3
PubMed Abstract: 
HIV reverse transcriptase (RT) is one of the main targets for the action of anti-AIDS drugs. Many of these drugs [e.g., 3'-azido-3'-deoxythymidine (AZT) and 2',3'-dideoxyinosine (ddI)] are analogues of the nucleoside substrates used by the HIV RT. One of the main problems in anti-HIV therapy is the selection of a mutant virus with reduced drug sensitivity ...
HIV reverse transcriptase (RT) is one of the main targets for the action of anti-AIDS drugs. Many of these drugs [e.g., 3'-azido-3'-deoxythymidine (AZT) and 2',3'-dideoxyinosine (ddI)] are analogues of the nucleoside substrates used by the HIV RT. One of the main problems in anti-HIV therapy is the selection of a mutant virus with reduced drug sensitivity. Drug resistance in HIV is generated for nucleoside analogue inhibitors by mutations in HIV RT. However, most of these mutations are situated some distance from the polymerase active site, giving rise to questions concerning the mechanism of resistance. To understand the possible structural bases for this, the crystal structures of AZT- and ddI-resistant RTs have been determined. For the ddI-resistant RT with a mutation at residue 74, no significant conformational changes were observed for the p66 subunit. In contrast, for the AZT-resistant RT (RTMC) bearing four mutations, two of these (at 215 and 219) give rise to a conformational change that propagates to the active site aspartate residues. Thus, these drug resistance mutations produce an effect at the RT polymerase site mediated simply by the protein. It is likely that such long-range effects could represent a common mechanism for generating drug resistance in other systems.
Related Citations: 
Unique Features in the Structure of the Complex between HIV-1 Reverse Transcriptase and the Bis(Heteroaryl)Piperazine (Bhap) U-90152 Explain Resistance Mutations for This Nonnucleoside Inhibitor Esnouf, R.M., Ren, J., Hopkins, A.L., Ross, C.K., Jones, E.Y., Stammers, D.K., Stuart, D.I. (1997) Proc Natl Acad Sci U S A 94: 3984
Complexes of HIV-1 Reverse Transcriptase with Inhibitors of the HEPT Series Reveal Conformational Changes Relevant to the Design of Potent Non-Nucleoside Inhibitors Hopkins, A.L., Ren, J., Esnouf, R.M., Willcox, B.E., Jones, E.Y., Ross, C., Miyasaka, T., Walker, R.T., Tanaka, H., Stammers, D.K., Stuart, D.I. (1996) J Med Chem 39: 1589
The Structure of HIV-1 Reverse Transcriptase Complexed with 9-Chloro-TIBO: Lessons for Inhibitor Design Ren, J., Esnouf, R., Hopkins, A., Ross, C., Jones, Y., Stammers, D., Stuart, D. (1995) Structure 3: 915
High Resolution Structures of HIV-1 RT from Four RT-Inhibitor Complexes Ren, J., Esnouf, R., Garman, E., Somers, D., Ross, C., Kirby, I., Keeling, J., Darby, G., Jones, Y., Stuart, D., Stammers, D. (1995) Nat Struct Biol 2: 293
Mechanism of Inhibition of HIV-1 Reverse Transcriptase by Non-Nucleoside Inhibitors Esnouf, R., Ren, J., Ross, C., Jones, Y., Stammers, D., Stuart, D. (1995) Nat Struct Biol 2: 303
Crystals of HIV-1 Reverse Transcriptase Diffracting to 2.2 A Resolution Stammers, D.K., Somers, D.O., Ross, C.K., Kirby, I., Ray, P.H., Wilson, J.E., Norman, M., Ren, J.S., Esnouf, R.M., Garman, E.F., Jones, E.Y., Stuart, D.I. (1994) J Mol Biol 242: 586
Organizational Affiliation: 
Laboratory of Molecular Biophysics, Rex Richards Building, South Parks Road, University of Oxford, Oxford OX1 3QU, United Kingdom.