1RDO

MANNOSE-BINDING PROTEIN, SUBTILISIN DIGEST FRAGMENT


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • R-Value Free: 0.238 
  • R-Value Work: 0.201 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structural analysis of monosaccharide recognition by rat liver mannose-binding protein.

Ng, K.K.Drickamer, K.Weis, W.I.

(1996) J.Biol.Chem. 271: 663-674

  • DOI: 10.1074/jbc.271.2.663
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The structural basis of carbohydrate recognition by rat liver mannose-binding protein (MBP-C) has been explored by determining the three-dimensional structure of the C-type carbohydrate-recognition domain (CRD) of MBP-C using x-ray crystallography. T ...

    The structural basis of carbohydrate recognition by rat liver mannose-binding protein (MBP-C) has been explored by determining the three-dimensional structure of the C-type carbohydrate-recognition domain (CRD) of MBP-C using x-ray crystallography. The structure was solved by molecular replacement using rat serum mannose-binding protein (MBP-A) as a search model and was refined to maximum Bragg spacings of 1.7 A. Despite their almost identical folds, the dimeric structures formed by the two MBP CRDs differ dramatically. Complexes of MBP-C with methyl glycosides of mannose, N-acetylglucosamine, and fucose were prepared by soaking MBP-C crystals in solutions containing these sugars. Surprisingly, the pyranose ring of mannose is rotated 180 degrees relative to the orientation observed previously in MBP-A, but the local interactions between sugar and protein are preserved. For each of the bound sugars, vicinal, equatorial hydroxyl groups equivalent to the 3- and 4-OH groups of mannose directly coordinate Ca2+ and form hydrogen bonds with residues also serving as Ca2+ ligands. Few interactions are observed between other parts of the sugar and the protein. A complex formed between free galactose and MBP-C reveals a similar mode of binding, with the anomeric hydroxyl group serving as one of the Ca2+ ligands. A second binding site for mannose has also been observed in one of two copies in the asymmetric unit at a sugar concentration of 1.3 M. These structures explain how MBPs recognize a wide range of monosaccharides and suggest how fine specificity differences between MBP-A and MBP-C may be achieved.


    Related Citations: 
    • Differential Recognition of Core and Terminal Portions of Oligosaccharide Ligands by Carbohydrate-Recognition Domains of Two Mannose-Binding Proteins
      Childs, R.A.,Feizi, T.,Yuen, C.-T.,Drickamer, K.,Quesenberry, M.S.
      (1990) J.Biol.Chem. 265: 20770
    • Physical Characterization and Crystallization of the Carbohydrate-Recognition Domain of a Mannose-Binding Protein from Rat
      Weis, W.I.,Crichlow, G.V.,Murthy, H.M.K.,Hendrickson, W.A.,Drickamer, K.
      (1991) J.Biol.Chem. 266: 20678
    • Structure of the Calcium-Dependent Lectin Domain from a Rat Mannose-Binding Protein Determined by MAD Phasing
      Weis, W.I.,Kahn, R.,Fourme, R.,Drickamer, K.,Hendrickson, W.A.
      (1991) Science 254: 1608
    • Structure of a C-Type Mannose-Binding Protein Complexed with an Oligosaccharide
      Weis, W.I.,Drickamer, K.,Hendrickson, W.A.
      (1992) Nature 360: 127


    Organizational Affiliation

    Department of Structural Biology, Stanford University School of Medicine, California 94305, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
MANNOSE-BINDING PROTEIN-C
1, 2
113Rattus norvegicusMutation(s): 0 
Gene Names: Mbl2
Find proteins for P08661 (Rattus norvegicus)
Go to UniProtKB:  P08661
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CL
Query on CL

Download SDF File 
Download CCD File 
1
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
CA
Query on CA

Download SDF File 
Download CCD File 
1, 2
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • R-Value Free: 0.238 
  • R-Value Work: 0.201 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 60.700α = 90.00
b = 75.300β = 90.00
c = 57.600γ = 90.00
Software Package:
Software NamePurpose
DENZOdata reduction
X-PLORphasing
X-PLORrefinement
SCALEPACKdata scaling
X-PLORmodel building

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1996-03-08
    Type: Initial release
  • Version 1.1: 2008-03-03
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance