1OEO

PTP1B with the catalytic cysteine oxidized to sulfonic acid


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.217 
  • R-Value Work: 0.182 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Redox Regulation of Protein Tyrosine Phosphatase Involves a Sulfenyl-Amide Intermediate

Salmeen, A.Andersen, J.N.Myers, M.P.Meng, T.C.Hinks, J.A.Tonks, N.K.Barford, D.

(2003) Nature 423: 769

  • DOI: 10.1038/nature01680
  • Primary Citation of Related Structures:  1OEM
  • Also Cited By: 1OES, 1OET, 1OEU, 1OEV

  • PubMed Abstract: 
  • The second messenger hydrogen peroxide is required for optimal activation of numerous signal transduction pathways, particularly those mediated by protein tyrosine kinases. One mechanism by which hydrogen peroxide regulates cellular processes is the ...

    The second messenger hydrogen peroxide is required for optimal activation of numerous signal transduction pathways, particularly those mediated by protein tyrosine kinases. One mechanism by which hydrogen peroxide regulates cellular processes is the transient inhibition of protein tyrosine phosphatases through the reversible oxidization of their catalytic cysteine, which suppresses protein dephosphorylation. Here we describe a structural analysis of the redox-dependent regulation of protein tyrosine phosphatase 1B (PTP1B), which is reversibly inhibited by oxidation after cells are stimulated with insulin and epidermal growth factor. The sulphenic acid intermediate produced in response to PTP1B oxidation is rapidly converted into a previously unknown sulphenyl-amide species, in which the sulphur atom of the catalytic cysteine is covalently linked to the main chain nitrogen of an adjacent residue. Oxidation of PTP1B to the sulphenyl-amide form is accompanied by large conformational changes in the catalytic site that inhibit substrate binding. We propose that this unusual protein modification both protects the active-site cysteine residue of PTP1B from irreversible oxidation to sulphonic acid and permits redox regulation of the enzyme by promoting its reversible reduction by thiols.


    Organizational Affiliation

    Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
PROTEIN-TYROSINE PHOSPHATASE, NON-RECEPTOR TYPE 1
X
321Homo sapiensGene Names: PTPN1 (PTP1B)
EC: 3.1.3.48
Find proteins for P18031 (Homo sapiens)
Go to Gene View: PTPN1
Go to UniProtKB:  P18031
Small Molecules
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
OCS
Query on OCS
X
L-PEPTIDE LINKINGC3 H7 N O5 SCYS
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.217 
  • R-Value Work: 0.182 
  • Space Group: P 31 2 1
Unit Cell:
Length (Å)Angle (°)
a = 88.365α = 90.00
b = 88.365β = 90.00
c = 104.764γ = 120.00
Software Package:
Software NamePurpose
DENZOdata reduction
REFMACrefinement
AMoREphasing
SCALEPACKdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2003-06-12
    Type: Initial release
  • Version 1.1: 2011-05-08
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance