1L42

CUMULATIVE SITE-DIRECTED CHARGE-CHANGE REPLACEMENTS IN BACTERIOPHAGE T4 LYSOZYME SUGGEST THAT LONG-RANGE ELECTROSTATIC INTERACTIONS CONTRIBUTE LITTLE TO PROTEIN STABILITY


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability.

Sun, D.P.Soderlind, E.Baase, W.A.Wozniak, J.A.Sauer, U.Matthews, B.W.

(1991) J.Mol.Biol. 221: 873-887

  • Primary Citation of Related Structures:  1L43, 1L44, 1L45, 1L46, 1L47

  • PubMed Abstract: 
  • Bacteriophage T4 lysozyme is a basic molecule with an isoelectric point above 9.0, and an excess of nine positive charges at neutral pH. It might be expected that it would be energetically costly to bring these out-of-balance charges from the extende ...

    Bacteriophage T4 lysozyme is a basic molecule with an isoelectric point above 9.0, and an excess of nine positive charges at neutral pH. It might be expected that it would be energetically costly to bring these out-of-balance charges from the extended, unfolded, form of the protein into the compact folded state. To determine the contribution of such long-range electrostatic interactions to the stability of the protein, five positively charged surface residues, Lys16, Arg119, Lys135, Lys147 and Arg154, were individually replaced with glutamic acid. Eight selected double, triple and quadruple mutants were also constructed so as to sequentially reduce the out-of-balance formal charge on the molecule from +9 to +1 units. Each of the five single variant proteins was crystallized and high-resolution X-ray analysis confirmed that each mutant structure was, in general, very similar to the wild-type. In the case of R154E, however, the Arg154 to Glu replacement caused a rearrangement in which Asp127 replaced Glu128 as the capping residue of a nearby alpha-helix. The thermal stabilities of all 13 variant proteins were found to be fairly similar, ranging from 0.5 kcal/mol more stable than wild-type to 1.7 kcal/mol less stable than wild-type. In the case of the five single charge-change variants, for which the structures were determined, the changes in stability can be rationalized in terms of changes in local interactions at the site of the replacement. There is no evidence that the reduction in the out-of-balance charge on the molecule increases the stability of the folded relative to the unfolded form, either at pH 2.8 or at pH 5.3. This indicates that long-range electrostatic interactions between the substituted amino acid residues and other charged groups on the surface of the molecule are weak or non-existent. Furthermore, the relative stabilities of the multiple charge replacement mutant proteins were found to be almost exactly equal to the sums of the relative stabilities of the constituent single mutant proteins. This also clearly indicates that the electrostatic interactions between the replaced charges are negligibly small. The activities of the charge-change mutant lysozymes, as measured by the rate of hydrolysis of cell wall suspensions, are essentially equal to that of the wild-type lysozyme, but on a lysoplate assay the mutant enzymes appear to have higher activity.(ABSTRACT TRUNCATED AT 400 WORDS)


    Related Citations: 
    • Contributions of Left-Handed Helical Residues to the Structure and Stability of Bacteriophage T4 Lysozyme
      Nicholson, H.,Soderlind, E.,Tronrud, D.E.,Matthews, B.W.
      (1989) J.Mol.Biol. 210: 181
    • Toward a Simplification of the Protein Folding Problem: A Stabilizing Polyalanine Alpha-Helix Engineered in T4 Lysozyme
      Zhang, X.-J.,Baase, W.A.,Matthews, B.W.
      (1991) Biochemistry 30: 2012
    • Structural Studies of Mutants of the Lysozyme of Bacteriophage T4. The Temperature-Sensitive Mutant Protein Thr157 (Right Arrow) Ile
      Gruetter, M.G.,Gray, T.M.,Weaver, L.H.,Alber, T.,Wilson, K.,Matthews, B.W.
      (1987) J.Mol.Biol. 197: 315
    • High-Resolution Structure of the Temperature-Sensitive Mutant of Phage Lysozyme, Arg 96 (Right Arrow) His
      Weaver, L.H.,Gray, T.M.,Gruetter, M.G.,Anderson, D.E.,Wozniak, J.A.,Dahlquist, F.W.,Matthews, B.W.
      (1989) Biochemistry 28: 3793
    • Multiple Stabilizing Alanine Replacements within Alpha-Helix 126-134 of T4 Lysozyme Have Independent, Additive Effects on Both Structure and Stability
      Zhang, X.-J.,Baase, W.A.,Matthews, B.W.
      () TO BE PUBLISHED --: --
    • Structural and Thermodynamic Analysis of the Packing of Two Alpha-Helices in Bacteriophage T4 Lysozyme
      Daopin, S.,Alber, T.,Baase, W.A.,Wozniak, J.A.,Matthews, B.W.
      (1991) J.Mol.Biol. 221: 647
    • Common Precursor of Lysozymes of Hen Egg-White and Bacteriophage T4
      Matthews, B.W.,Gruetter, M.G.,Anderson, W.F.,Remington, S.J.
      (1981) Nature 290: 334
    • Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme
      Matthews, B.W.
      (1975) Biochim.Biophys.Acta 405: 442
    • Analysis of the Interaction between Charged Side Chains and the Alpha-Helix Dipole Using Designed Thermostable Mutants of Phage T4 Lysozyme
      Nicholson, H.,Anderson, D.E.,Dao-Pin, S.,Matthews, B.W.
      (1991) Biochemistry 30: 9816
    • Hydrophobic Stabilization in T4 Lysozyme Determined Directly by Multiple Substitutions of Ile 3
      Matsumura, M.,Becktel, W.J.,Matthews, B.W.
      (1988) Nature 334: 406
    • Contributions of Hydrogen Bonds of Thr 157 to the Thermodynamic Stability of Phage T4 Lysozyme
      Alber, T.,Dao-Pin, S.,Wilson, K.,Wozniak, J.A.,Cook, S.P.,Matthews, B.W.
      (1987) Nature 330: 41
    • Contributions of Engineered Surface Salt Bridges to the Stability of T4 Lysozyme Determined by Directed Mutagenesis
      Dao-Pin, S.,Sauer, U.,Nicholson, H.,Matthews, B.W.
      (1991) Biochemistry 30: 7142
    • Nicholson, H.,Becktel, W.,Matthews, B.W.
      () TO BE PUBLISHED --: --
    • Structural Analysis of the Temperature-Sensitive Mutant of Bacteriophage T4 Lysozyme, Glycine 156 (Right Arrow) Aspartic Acid
      Gray, T.M.,Matthews, B.W.
      (1987) J.Biol.Chem. 262: 16858
    • Enhanced Protein Thermostability from Site-Directed Mutations that Decrease the Entropy of Unfolding
      Matthews, B.W.,Nicholson, H.,Becktel, W.J.
      (1987) Proc.Natl.Acad.Sci.USA 84: 6663
    • Crystallographic Determination of the Mode of Binding of Oligosaccharides to T4 Bacteriophage Lysozyme. Implications for the Mechanism of Catalysis
      Anderson, W.F.,Gruetter, M.G.,Remington, S.J.,Weaver, L.H.,Matthews, B.W.
      (1981) J.Mol.Biol. 147: 523
    • Atomic Coordinates for T4 Phage Lysozyme
      Remington, S.J.,Teneyck, L.F.,Matthews, B.W.
      (1977) Biochem.Biophys.Res.Commun. 75: 265
    • Structure of the Lysozyme from Bacteriophage T4, an Electron Density Map at 2.4 Angstroms Resolution
      Remington, S.J.,Anderson, W.F.,Owen, J.,Teneyck, L.F.,Grainger, C.T.,Matthews, B.W.
      (1978) J.Mol.Biol. 118: 81
    • Structure of a Thermostable Disulfide-Bridge Mutant of Phage T4 Lysozyme Shows that an Engineered Crosslink in a Flexible Region Does not Increase the Rigidity of the Folded Protein
      Pjura, P.E.,Matsumura, M.,Wozniak, J.A.,Matthews, B.W.
      (1990) Biochemistry 29: 2592
    • Tolerance of T4 Lysozyme to Proline Substitutions within the Long Interdomain Alpha-Helix Illustrates the Adaptability of Proteins to Potentially Destabilizing Lesions
      Sauer, U.H.,Dao-Pin, S.,Matthews, B.W.
      () TO BE PUBLISHED --: --
    • Structural Studies of Mutants of T4 Lysozyme that Alter Hydrophobic Stabilization
      Matsumura, M.,Wozniak, J.A.,Dao-Pin, S.,Matthews, B.W.
      (1989) J.Biol.Chem. 264: 16059
    • Temperature-Sensitive Mutations of Bacteriophage T4 Lysozyme Occur at Sites with Low Mobility and Low Solvent Accessibility in the Folded Protein
      Alber, T.,Dao-Pin, S.,Nye, J.A.,Muchmore, D.C.,Matthews, B.W.
      (1987) Biochemistry 26: 3754
    • Tolerance of T4 Lysozyme to Multiple Xaa (Right Arrow) Ala Substitutions: A Polyalanine Alpha-Helix Containing Ten Consecutive Alanines
      Heinz, D.W.,Baase, W.A.,Matthews, B.W.
      () TO BE PUBLISHED --: --
    • The Structural and Thermodynamic Consequences of Burying a Charged Residue within the Hydrophobic Core of T4 Lysozyme
      Daopin, S.,Anderson, E.,Baase, W.,Dahlquist, F.W.,Matthews, B.W.
      () TO BE PUBLISHED --: --
    • Structure of Bacteriophage T4 Lysozyme Refined at 1.7 Angstroms Resolution
      Weaver, L.H.,Matthews, B.W.
      (1987) J.Mol.Biol. 193: 189
    • Enhanced Protein Thermostability from Designed Mutations that Interact with Alpha-Helix Dipoles
      Nicholson, H.,Becktel, W.J.,Matthews, B.W.
      (1988) Nature 336: 651
    • Replacements of Pro86 in Phage T4 Lysozyme Extend an Alpha-Helix But Do not Alter Protein Stability
      Alber, T.,Bell, J.A.,Dao-Pin, S.,Nicholson, H.,Cook, J.A.Wozniak S.,Matthews, B.W.
      (1988) Science 239: 631
    • Relation between Hen Egg White Lysozyme and Bacteriophage T4 Lysozyme. Evolutionary Implications
      Matthews, B.W.,Remington, S.J.,Gruetter, M.G.,Anderson, W.F.
      (1981) J.Mol.Biol. 147: 545
    • Crystallographic Data for Lysozyme from Bacteriophage T4
      Matthews, B.W.,Dahlquist, F.W.,Maynard, A.Y.
      (1973) J.Mol.Biol. 78: 575
    • The Three Dimensional Structure of the Lysozyme from Bacteriophage T4
      Matthews, B.W.,Remington, S.J.
      (1974) Proc.Natl.Acad.Sci.USA 71: 4178


    Organizational Affiliation

    Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene 97403.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
T4 LYSOZYME
A
164Enterobacteria phage T4Gene Names: E
EC: 3.2.1.17
Find proteins for P00720 (Enterobacteria phage T4)
Go to UniProtKB:  P00720
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • Space Group: P 32 2 1
Unit Cell:
Length (Å)Angle (°)
a = 61.100α = 90.00
b = 61.100β = 90.00
c = 96.500γ = 120.00
Software Package:
Software NamePurpose
TNTrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1991-10-15
    Type: Initial release
  • Version 1.1: 2008-03-24
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Advisory, Version format compliance
  • Version 1.3: 2017-11-29
    Type: Derived calculations, Other