Replacements of Pro86 in phage T4 lysozyme extend an alpha-helix but do not alter protein stability.
Alber, T., Bell, J.A., Sun, D.P., Nicholson, H., Wozniak, J.A., Cook, S., Matthews, B.W.(1988) Science 239: 631-635
- PubMed: 3277275 Search on PubMed
- Primary Citation of Related Structures:  
- PubMed Abstract: 
- Structure of the Lysozyme from Bacteriophage T4, an Electron Density Map at 2.4 Angstroms Resolution
Remington, S.J.,Anderson, W.F.,Owen, J.,Teneyck, L.F.,Grainger, C.T.,Matthews, B.W.
(1978) J.Mol.Biol. 118: 81 - Contributions of Left-Handed Helical Residues to the Structure and Stability of Bacteriophage T4 Lysozyme
Nicholson, H.,Soderlind, E.,Tronrud, D.E.,Matthews, B.W.
(1989) J.Mol.Biol. 210: 181 - Atomic Coordinates for T4 Phage Lysozyme
Remington, S.J.,Teneyck, L.F.,Matthews, B.W.
(1977) Biochem.Biophys.Res.Commun. 75: 265 - Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme
Matthews, B.W.
(1975) Biochim.Biophys.Acta 405: 442 - Enhanced Protein Thermostability from Designed Mutations that Interact with Alpha-Helix Dipoles
Nicholson, H.,Becktel, W.J.,Matthews, B.W.
(1988) Nature 336: 651 - Common Precursor of Lysozymes of Hen Egg-White and Bacteriophage T4
Matthews, B.W.,Gruetter, M.G.,Anderson, W.F.,Remington, S.J.
(1981) Nature 290: 334 - Hydrophobic Stabilization in T4 Lysozyme Determined Directly by Multiple Substitutions of Ile 3
Matsumura, M.,Becktel, W.J.,Matthews, B.W.
(1988) Nature 334: 406 - Temperature-Sensitive Mutations of Bacteriophage T4 Lysozyme Occur at Sites with Low Mobility and Low Solvent Accessibility in the Folded Protein
Alber, T.,Dao-Pin, S.,Nye, J.A.,Muchmore, D.C.,Matthews, B.W.
(1987) Biochemistry 26: 3754 - Enhanced Protein Thermostability from Site-Directed Mutations that Decrease the Entropy of Unfolding
Matthews, B.W.,Nicholson, H.,Becktel, W.J.
(1987) Proc.Natl.Acad.Sci.USA 84: 6663 - Crystallographic Data for Lysozyme from Bacteriophage T4
Matthews, B.W.,Dahlquist, F.W.,Maynard, A.Y.
(1973) J.Mol.Biol. 78: 575 - Relation between Hen Egg White Lysozyme and Bacteriophage T4 Lysozyme. Evolutionary Implications
Matthews, B.W.,Remington, S.J.,Gruetter, M.G.,Anderson, W.F.
(1981) J.Mol.Biol. 147: 545 - The Three Dimensional Structure of the Lysozyme from Bacteriophage T4
Matthews, B.W.,Remington, S.J.
(1974) Proc.Natl.Acad.Sci.USA 71: 4178 - Contributions of Hydrogen Bonds of Thr 157 to the Thermodynamic Stability of Phage T4 Lysozyme
Alber, T.,Dao-Pin, S.,Wilson, K.,Wozniak, J.A.,Cook, S.P.,Matthews, B.W.
(1987) Nature 330: 41 - Structure of Bacteriophage T4 Lysozyme Refined at 1.7 Angstroms Resolution
Weaver, L.H.,Matthews, B.W.
(1987) J.Mol.Biol. 193: 189 - Structural Studies of Mutants of the Lysozyme of Bacteriophage T4. The Temperature-Sensitive Mutant Protein Thr157 (Right Arrow) Ile
Gruetter, M.G.,Gray, T.M.,Weaver, L.H.,Alber, T.,Wilson, K.,Matthews, B.W.
(1987) J.Mol.Biol. 197: 315 - Structural Studies of Mutants of T4 Lysozyme that Alter Hydrophobic Stabilization
Matsumura, M.,Wozniak, J.A.,Dao-Pin, S.,Matthews, B.W.
() TO BE PUBLISHED --: -- - Crystallographic Determination of the Mode of Binding of Oligosaccharides to T4 Bacteriophage Lysozyme. Implications for the Mechanism of Catalysis
Anderson, W.F.,Gruetter, M.G.,Remington, S.J.,Weaver, L.H.,Matthews, B.W.
(1981) J.Mol.Biol. 147: 523 - Structural Analysis of the Temperature-Sensitive Mutant of Bacteriophage T4 Lysozyme, Glycine 156 (Right Arrow) Aspartic Acid
Gray, T.M.,Matthews, B.W.
(1987) J.Biol.Chem. 262: 16858 - High-Resolution Structure of the Temperature-Sensitive Mutant of Phage Lysozyme, Arg 96 (Right Arrow) His
Weaver, L.H.,Gray, T.M.,Gruetter, M.G.,Anderson, D.E.,Wozniak, J.A.,Dahlquist, F.W.,Matthews, B.W.
(1989) Biochemistry 28: 3793
To investigate the relation between protein stability and the predicted stabilities of individual secondary structural elements, residue Pro86 in an alpha-helix in phage T4 lysozyme was replaced by ten different amino acids. The x-ray crystal structu ...
To investigate the relation between protein stability and the predicted stabilities of individual secondary structural elements, residue Pro86 in an alpha-helix in phage T4 lysozyme was replaced by ten different amino acids. The x-ray crystal structures of seven of the mutant lysozymes were determined at high resolution. In each case, replacement of the proline resulted in the formation of an extended alpha-helix. This involves a large conformational change in residues 81 to 83 and smaller shifts that extend 20 angstroms across the protein surface. Unexpectedly, all ten amino acid substitutions marginally reduce protein thermostability. This insensitivity of stability to the amino acid at position 86 is not simply explained by statistical and thermodynamic criteria for helical propensity. The observed conformational changes illustrate a general mechanism by which proteins can tolerate mutations.
Related Citations: 
Organizational Affiliation: 
Department of Physics, University of Oregon, Eugene 97403.