1L22

CONTRIBUTIONS OF LEFT-HANDED HELICAL RESIDUES TO THE STRUCTURE AND STABILITY OF BACTERIOPHAGE T4 LYSOZYME


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Contributions of left-handed helical residues to the structure and stability of bacteriophage T4 lysozyme.

Nicholson, H.Soderlind, E.Tronrud, D.E.Matthews, B.W.

(1989) J.Mol.Biol. 210: 181-193

  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Non-glycine residues in proteins are rarely observed to have "left-handed helical" conformations. For glycine, however, this conformation is common. To determine the contributions of left-handed helical residues to the stability of a protein, two suc ...

    Non-glycine residues in proteins are rarely observed to have "left-handed helical" conformations. For glycine, however, this conformation is common. To determine the contributions of left-handed helical residues to the stability of a protein, two such residues in phage T4 lysozyme, Asn55 and Lys124, were replaced with glycine. The mutant proteins fold normally and are fully active, showing that left-handed non-glycine residues, although rare, do not have an indispensable role in the folding of the protein or in its activity. The thermodynamic stability of the Lys124 to Gly variant is essentially identical with that of wild-type lysozyme. The Asn55 to Gly mutant protein is marginally less stable (0.5 kcal/mol). These results indicate that the conformational energy of a glycine and a non-glycine residue in the left-handed helical conformation are very similar. This is consistent with some theoretical energy distributions, but is inconsistent with others, which suggest that replacements of the sort described here might increase the stability of the protein by up to 5 kcal/mol. Crystallographic analysis of the mutant proteins shows that the backbone conformation of the Lys124 to Gly variant is essentially identical with that of the wild-type structure. In the case of the Asn55 to Gly replacement, however, the (phi, psi) values of residue 55 change by about 20 degrees. This suggests that the energy minimum for left-handed glycine residues is not the same as that for non-glycine residues. This is strongly indicated also by a survey of accurately determined protein crystal structures, which suggests that the energy minimum for left-handed glycine residues is near (phi = 90 degrees, psi = 0 degrees), whereas that for non-glycine residues is close to (phi = 60 degrees, psi = 30 degrees). This apparent energy minimum for glycine is not clearly predicted by any of the theoretical (phi, psi) energy contour maps.


    Related Citations: 
    • Contributions of Hydrogen Bonds of Thr 157 to the Thermodynamic Stability of Phage T4 Lysozyme
      Alber, T.,Dao-Pin, S.,Wilson, K.,Wozniak, J.A.,Cook, S.P.,Matthews, B.W.
      (1987) Nature 330: 41
    • Hydrophobic Stabilization in T4 Lysozyme Determined Directly by Multiple Substitutions of Ile 3
      Matsumura, M.,Becktel, W.J.,Matthews, B.W.
      (1988) Nature 334: 406
    • Common Precursor of Lysozymes of Hen Egg-White and Bacteriophage T4
      Matthews, B.W.,Gruetter, M.G.,Anderson, W.F.,Remington, S.J.
      (1981) Nature 290: 334
    • Atomic Coordinates for T4 Phage Lysozyme
      Remington, S.J.,Teneyck, L.F.,Matthews, B.W.
      (1977) Biochem.Biophys.Res.Commun. 75: 265
    • Replacements of Pro86 in Phage T4 Lysozyme Extend an Alpha-Helix But Do not Alter Protein Stability
      Alber, T.,Bell, J.A.,Dao-Pin, S.,Nicholson, H.,Cook, J.A.Wozniak S.,Matthews, B.W.
      (1988) Science 239: 631
    • Temperature-Sensitive Mutations of Bacteriophage T4 Lysozyme Occur at Sites with Low Mobility and Low Solvent Accessibility in the Folded Protein
      Alber, T.,Dao-Pin, S.,Nye, J.A.,Muchmore, D.C.,Matthews, B.W.
      (1987) Biochemistry 26: 3754
    • The Three Dimensional Structure of the Lysozyme from Bacteriophage T4
      Matthews, B.W.,Remington, S.J.
      (1974) Proc.Natl.Acad.Sci.USA 71: 4178
    • Structure of Bacteriophage T4 Lysozyme Refined at 1.7 Angstroms Resolution
      Weaver, L.H.,Matthews, B.W.
      (1987) J.Mol.Biol. 193: 189
    • Structure of the Lysozyme from Bacteriophage T4, an Electron Density Map at 2.4 Angstroms Resolution
      Remington, S.J.,Anderson, W.F.,Owen, J.,Teneyck, L.F.,Grainger, C.T.,Matthews, B.W.
      (1978) J.Mol.Biol. 118: 81
    • Crystallographic Data for Lysozyme from Bacteriophage T4
      Matthews, B.W.,Dahlquist, F.W.,Maynard, A.Y.
      (1973) J.Mol.Biol. 78: 575
    • Structural Studies of Mutants of T4 Lysozyme that Alter Hydrophobic Stabilization
      Matsumura, M.,Wozniak, J.A.,Dao-Pin, S.,Matthews, B.W.
      () TO BE PUBLISHED --: --
    • Crystallographic Determination of the Mode of Binding of Oligosaccharides to T4 Bacteriophage Lysozyme. Implications for the Mechanism of Catalysis
      Anderson, W.F.,Gruetter, M.G.,Remington, S.J.,Weaver, L.H.,Matthews, B.W.
      (1981) J.Mol.Biol. 147: 523
    • Structural Studies of Mutants of the Lysozyme of Bacteriophage T4. The Temperature-Sensitive Mutant Protein Thr157 (Right Arrow) Ile
      Gruetter, M.G.,Gray, T.M.,Weaver, L.H.,Alber, T.,Wilson, K.,Matthews, B.W.
      (1987) J.Mol.Biol. 197: 315
    • Enhanced Protein Thermostability from Designed Mutations that Interact with Alpha-Helix Dipoles
      Nicholson, H.,Becktel, W.J.,Matthews, B.W.
      (1988) Nature 336: 651
    • High-Resolution Structure of the Temperature-Sensitive Mutant of Phage Lysozyme, Arg 96 (Right Arrow) His
      Weaver, L.H.,Gray, T.M.,Gruetter, M.G.,Anderson, D.E.,Wozniak, J.A.,Dahlquist, F.W.,Matthews, B.W.
      (1989) Biochemistry 28: 3793
    • Structural Analysis of the Temperature-Sensitive Mutant of Bacteriophage T4 Lysozyme, Glycine 156 (Right Arrow) Aspartic Acid
      Gray, T.M.,Matthews, B.W.
      (1987) J.Biol.Chem. 262: 16858
    • Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme
      Matthews, B.W.
      (1975) Biochim.Biophys.Acta 405: 442
    • Relation between Hen Egg White Lysozyme and Bacteriophage T4 Lysozyme. Evolutionary Implications
      Matthews, B.W.,Remington, S.J.,Gruetter, M.G.,Anderson, W.F.
      (1981) J.Mol.Biol. 147: 545
    • Enhanced Protein Thermostability from Site-Directed Mutations that Decrease the Entropy of Unfolding
      Matthews, B.W.,Nicholson, H.,Becktel, W.J.
      (1987) Proc.Natl.Acad.Sci.USA 84: 6663


    Organizational Affiliation

    Institute of Molecular Biology, University of Oregon, Eugene 97403.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
T4 LYSOZYME
A
164Enterobacteria phage T4Mutation(s): 0 
Gene Names: E
EC: 3.2.1.17
Find proteins for P00720 (Enterobacteria phage T4)
Go to UniProtKB:  P00720
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • Space Group: P 32 2 1
Unit Cell:
Length (Å)Angle (°)
a = 60.600α = 90.00
b = 60.600β = 90.00
c = 96.400γ = 120.00
Software Package:
Software NamePurpose
TNTrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1990-01-15
    Type: Initial release
  • Version 1.1: 2008-03-24
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Advisory, Version format compliance
  • Version 1.3: 2017-11-29
    Type: Derived calculations, Other