Structural mechanisms of drug resistance for mutations at codons 181 and 188 in HIV-1 reverse transcriptase and the improved resilience of second generation non-nucleoside inhibitors.
Ren, J., Nichols, C., Bird, L., Chamberlain, P., Weaver, K., Short, S., Stuart, D.I., Stammers, D.K.(2001) J Mol Biol 312: 795-805
- PubMed: 11575933 Search on PubMed
- DOI: https://doi.org/10.1006/jmbi.2001.4988
- Primary Citation of Related Structures:  
1JKH, 1JLA, 1JLB, 1JLC, 1JLE, 1JLF, 1JLG - PubMed Abstract: 
- 2-Amino-6-Arylsulfonylbenzonitriles as Non-Nucleoside Reverse Transcriptase Inhibitors of HIV-1
Chan, J.H., Hong, J.S., Hunter III, R.N., Orr, G.F., Cowan, J.R., Sherman, D.B., Sparks, S.M., Reitter, B.E., Andrews III, C.W., Hazen, R.J., St Clair, M., Boone, L.R., Ferris, R.G., Creech, K.L., Roberts, G.B., Short, S.A., Weaver, K., Ott, R.J., Ren, J., Hopkins, A., Stuart, D.I., Stammers, D.K.
(2001) J Med Chem 44: 1866 - Structural Basis for the Resilience of Efavirenz (Dmp-266) to Drug Resistant Mutations in HIV-1 Reverse Transcriptase
Ren, J., Milton, J., Weaver, K.L., Short, S.A., Stuart, D.I., Stammers, D.K.
(2000) Structure 8: 1089 - Binding of the Second Generattion Non-Nucleoside Inhibitor S-1153 to HIV-1 Reverse Transcriptase Involves Extensive Main Chain Hydrogen Bonding
Ren, J., Nichols, C., Bird, L.E., Fujiwara, T., Suginoto, H., Stuart, D.I., Stammers, D.K.
(2000) J Biol Chem 275: 14316 - Phenethylthiazolylthiourea (Pett) Non-Nucleoside Inhibitors of HIV-1 and HIV-2 Reverse Transcriptases: Structural and Biochemical Analyses
Ren, J., Diprose, J., Warren, J., Esnouf, R.M., Bird, L.E., Ikemizu, S., Slater, M., Milton, J., Balzarini, J., Stuart, D.I., Stammers, D.K.
(2000) J Biol Chem 275: 5633 - Crystallographic Analysis of the Binding Modes of Non-Nucleoside Thiazoloisoindolinone Inhibitors to HIV-1 Reverse Transcriptase and Comparison with Modeling Studies
Ren, J., Esnouf, R.M., Hopkins, A.L., Stuart, D.I., Stammers, D.K.
(1999) J Med Chem 42: 3845 - Design of Mkc-442 (Emivirine) Analogues with Improved Activity Against Drug-Resistant HIV Mutants
Hopkins, A.L., Ren, J., Tanaka, H., Baba, M., Okamato, M., Stuart, D.I., Stammers, D.K.
(1999) J Med Chem 42: 4500 - Crystal Structures of Reverse Transcriptase in Complex with Carboxanilide Derivatives
Ren, J., Esnouf, R.M., Hopkins, A.L., Warren, J., Balzarini, J., Stuart, D.I., Stammers, D.K.
(1998) Biochemistry 37: 14394 - 3'-Azido-3'-Deoxythymidine Drug Resistance Mutations in HIV-1 Reverse Transcriptase Can Induce Long Range Conformational Changes
Ren, J., Esnouf, R.M., Hopkins, A.L., Jones, E.Y., Kirby, I., Keeling, J., Ross, C.K., Larder, B.A., Stuart, D.I., Stammers, D.K.
(1998) Proc Natl Acad Sci U S A 95: 9518 - Continuous and Discontinuous Changes in the Unit Cell of HIV-1 Reverse Transcriptase Crystals on Dehydration
Esnouf, R.M., Ren, J., Garman, E., Somers, D.O., Ross, C.K., Jones, E.Y., Stammers, D.K., Stuart, D.I.
(1998) Acta Crystallogr D Biol Crystallogr 54: 938 - Unique Features in the Structure of the Complex between HIV-1 Reverse Transcriptase and the Bis(Heteroaryl)Piperazine (Bhap) U-90152 Explain Resistance Mutations for This Non-Nucleoside Inhibitor
Esnouf, R.M., Ren, J., Hopkins, A.L., Ross, C.K., Jones, E.Y., Stammers, D.K., Stuart, D.I.
(1997) Proc Natl Acad Sci U S A 94: 3984 - Complexes of HIV-1 Reverse Transcriptase with Inhibitors of the HEPT Series Reveal Conformational Changes Relevant to the Design of Potent Non-Nucleoside Inhibitors
Hopkins, A.L., Ren, J., Esnouf, R.M., Willcox, B.E., Jones, E.Y., Ross, C.K., Miyasaka, T., Walker, R.T., Tanaka, H., Stammers, D.K., Stuart, D.I.
(1996) J Med Chem 39: 1589 - The Structure of HIV-1 Reverse Transcriptase Complexed with 9-Chloro-TIBO: Lessons for Inhibitor Design
Ren, J., Esnouf, R.M., Hopkins, A.L., Ross, C.K., Jones, E.Y., Stammers, D.K., Stuart, D.I.
(1995) Structure 3: 915 - High Resolution Structures of HIV-1 RT from Four RT-Inhibitor Complexes
Ren, J., Esnouf, R.M., Garman, E., Somers, D.O., Ross, C.K., Kirby, I., Keeling, J., Darby, G., Jones, E.Y., Stuart, D.I., Stammers, D.K.
(1995) Nat Struct Biol 2: 293 - Mechanism of Inhibition of HIV-1 Reverse Transcriptase by Non-Nucleoside Inhibitors
Esnouf, R.M., Ren, J., Ross, C.K., Jones, E.Y., Stammers, D.K., Stuart, D.I.
(1995) Nat Struct Biol 2: 303 - Crystals of HIV-1 Reverse Transcriptase Diffracting to 2.2 Angstrom Resolution
Stammers, D.K., Somers, D.O., Ross, C.K., Kirby, I., Ray, P.H., Wilson, J.E., Norman, M., Ren, J., Esnouf, R.M., Garman, E., Jones, E.Y., Stuart, D.I.
(1994) J Mol Biol 242: 586
Mutations at either Tyr181 or Tyr188 within HIV-1 reverse transcriptase (RT) give high level resistance to many first generation non-nucleoside inhibitors (NNRTIs) such as the anti-AIDS drug nevirapine. By comparison second generation inhibitors, for instance the drug efavirenz, show much greater resilience to these mutations ...
Mutations at either Tyr181 or Tyr188 within HIV-1 reverse transcriptase (RT) give high level resistance to many first generation non-nucleoside inhibitors (NNRTIs) such as the anti-AIDS drug nevirapine. By comparison second generation inhibitors, for instance the drug efavirenz, show much greater resilience to these mutations. In order to understand the structural basis for these differences we have determined a series of seven crystal structures of mutant RTs in complexes with first and second generation NNRTIs as well as one example of an unliganded mutant RT. These are Tyr181Cys RT (TNK-651) to 2.4 A, Tyr181Cys RT (efavirenz) to 2.6 A, Tyr181Cys RT (nevirapine) to 3.0 A, Tyr181Cys RT (PETT-2) to 3.0 A, Tyr188Cys RT (nevirapine) to 2.6 A, Tyr188Cys RT (UC-781) to 2.6 A and Tyr188Cys RT (unliganded) to 2.8 A resolution. In the two previously published structures of HIV-1 reverse transcriptase with mutations at 181 or 188 no side-chain electron density was observed within the p66 subunit (which contains the inhibitor binding pocket) for the mutated residues. In contrast the mutated side-chains can be seen in the NNRTI pocket for all seven structures reported here, eliminating the possibility that disordering contributes to the mechanism of resistance. In the case of the second generation compounds efavirenz with Tyr181Cys RT and UC-781 with Tyr188Cys RT there are only small rearrangements of either inhibitor within the binding site compared to wild-type RT and also for the first generation compounds TNK-651, PETT-2 and nevirapine with Tyr181Cys RT. For nevirapine with the Tyr188Cys RT there is however a more substantial movement of the drug molecule. We conclude that protein conformational changes and rearrangements of drug molecules within the mutated sites are not general features of these particular inhibitor/mutant combinations. The main contribution to drug resistance for Tyr181Cys and Tyr188Cys RT mutations is the loss of aromatic ring stacking interactions for first generation compounds, providing a simple explanation for the resilience of second generation NNRTIs, as such interactions make much less significant contribution to their binding.
Related Citations: 
Organizational Affiliation: 
Structural Biology Division, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.