1IE5

NMR STRUCTURE OF THE THIRD IMMUNOGLOBULIN DOMAIN FROM THE NEURAL CELL ADHESION MOLECULE.


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Solution structure of the third immunoglobulin domain of the neural cell adhesion molecule N-CAM: can solution studies define the mechanism of homophilic binding?

Atkins, A.R.Chung, J.Deechongkit, S.Little, E.B.Edelman, G.M.Wright, P.E.Cunningham, B.A.Dyson, H.J.

(2001) J.Mol.Biol. 311: 161-172

  • DOI: 10.1006/jmbi.2001.4861

  • PubMed Abstract: 
  • Homophilic binding of the neural cell adhesion molecule (N-CAM) mediates the calcium-independent cell-cell adhesion that is involved in neuronal development. Two hypotheses have been advanced for the mechanism of homophilic binding. Cell-based experi ...

    Homophilic binding of the neural cell adhesion molecule (N-CAM) mediates the calcium-independent cell-cell adhesion that is involved in neuronal development. Two hypotheses have been advanced for the mechanism of homophilic binding. Cell-based experiments have implicated each of the five extracellular immunoglobulin (Ig) domains of N-CAM in the homophilic adhesion interaction, and have predicted that the third domain (Ig III) self-associates. The alternative hypothesis is based on solution observations, which implicate a specific antiparallel interaction between the first two Ig domains (Ig I and Ig II). In order to test these hypotheses, we have determined a high-resolution solution structure of recombinant Ig III (sequence derived from chicken N-CAM) and examined the aggregation behavior of isolated Ig domains in solution. The structure shows that Ig III adopts a canonical Ig fold, in which the beta strands ABED and A'GFCC' form two beta sheets that are linked by a disulfide bond. In contrast to the demonstrated aggregation of Ig III on solid supports, we were unable to demonstrate self-association of Ig III under any of a variety of solution conditions. The structure shows that the surface of Ig III is dominated by two large acidic patches, which may explain our failure to observe self-association in solution. To evaluate the involvement of the Ig I-Ig II interaction in cell-cell adhesion, we designed a point mutation in Ig I (F19S) that proved sufficient to abrogate the Ig I-Ig II interaction seen in solution. However, the introduction of this mutation into full-length N-CAM expressed in COS-7 cells failed to affect N-CAM-mediated cell-cell adhesion. The inability to observe Ig III self-association in solution, combined with the failure of the F19S mutation to affect N-CAM-mediated cell-cell adhesion, suggests that, although solution studies can give important insights into the structures of individual domains, the interactions observed in solution between the domains may not be representative of the interactions that occur on the cell surface.


    Organizational Affiliation

    Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
NEURAL CELL ADHESION MOLECULE
A
107Gallus gallusGene Names: NCAM1
Find proteins for P13590 (Gallus gallus)
Go to Gene View: NCAM1
Go to UniProtKB:  P13590
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 
  • Olderado: 1IE5 Olderado

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2001-08-08
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance