1H0X

Structure of Alba: an archaeal chromatin protein modulated by acetylation


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.6 Å
  • R-Value Free: 0.285 
  • R-Value Work: 0.235 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structure of Alba: An Archaeal Chromatin Protein Modulated by Acetylation

Wardleworth, B.N.Russell, R.J.M.Bell, S.D.Taylor, G.L.White, M.F.

(2002) Embo J. 21: 4654

  • Primary Citation of Related Structures:  1H0Y
  • Also Cited By: 2H9U

  • PubMed Abstract: 
  • Eukaryotic DNA is packaged into nucleosomes that regulate the accessibility of the genome to replication, transcription and repair factors. Chromatin accessibility is controlled by histone modifications including acetylation and methylation. Archaea ...

    Eukaryotic DNA is packaged into nucleosomes that regulate the accessibility of the genome to replication, transcription and repair factors. Chromatin accessibility is controlled by histone modifications including acetylation and methylation. Archaea possess eukary otic-like machineries for DNA replication, transcription and information processing. The conserved archaeal DNA binding protein Alba (formerly Sso10b) interacts with the silencing protein Sir2, which regulates Alba's DNA binding affinity by deacetylation of a lysine residue. We present the crystal structure of Alba from Sulfolobus solfataricus at 2.6 A resolution (PDB code 1h0x). The fold is reminiscent of the N-terminal DNA binding domain of DNase I and the C-terminal domain of initiation factor IF3. The Alba dimer has two extended beta-hairpins flanking a central body containing the acetylated lysine, Lys16, suggesting three main points of contact with the DNA. Fluorescence, calorimetry and electrophoresis data suggest a final binding stoichiometry of approximately 5 bp DNA per Alba dimer. We present a model for the Alba-DNA interaction consistent with the available structural, biophysical and electron microscopy data.


    Related Citations: 
    • Preliminary Crystallographic Studies of the Double-Stranded DNA Binding Protein Sso10B from Sulfolobus Solfataricus
      Wardleworth, B.N.,Russell, R.J.M.,White, M.F.,Taylor, G.L.
      (2001) Acta Crystallogr.,Sect.D 57: 1893
    • The Interaction of Alba, a Conserved Archaeal Chromatin Protein, with Sir2 and its Regulation by Acetylation
      Bell, S.D.,Botting, C.H.,Wardleworth, B.N.,Jackson, S.P.,White, M.F.
      (2002) Science 296: 148


    Organizational Affiliation

    Centre for Biomolecular Science, St Andrews University, North Haugh, St Andrews, Fife KY16 9ST, UK.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
DNA BINDING PROTEIN SSO10B
A, B
100Sulfolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2)Gene Names: albA1 (sso10b)
Find proteins for P60849 (Sulfolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2))
Go to UniProtKB:  P60849
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.6 Å
  • R-Value Free: 0.285 
  • R-Value Work: 0.235 
  • Space Group: P 65 2 2
Unit Cell:
Length (Å)Angle (°)
a = 84.310α = 90.00
b = 84.310β = 90.00
c = 162.220γ = 120.00
Software Package:
Software NamePurpose
SOLVEphasing
DENZOdata reduction
SCALEPACKdata scaling
CNSrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2002-09-05
    Type: Initial release
  • Version 1.1: 2011-05-08
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance