1D7K

CRYSTAL STRUCTURE OF HUMAN ORNITHINE DECARBOXYLASE AT 2.1 ANGSTROMS RESOLUTION


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.288 
  • R-Value Work: 0.212 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Crystal structure of human ornithine decarboxylase at 2.1 A resolution: structural insights to antizyme binding.

Almrud, J.J.Oliveira, M.A.Kern, A.D.Grishin, N.V.Phillips, M.A.Hackert, M.L.

(2000) J Mol Biol 295: 7-16

  • DOI: https://doi.org/10.1006/jmbi.1999.3331
  • Primary Citation of Related Structures:  
    1D7K

  • PubMed Abstract: 

    The polyamines spermidine and spermine are ubiquitous and required for cell growth and differentiation in eukaryotes. Ornithine decarboxylase (ODC, EC 4.1.1.17) performs the first step in polyamine biosynthesis, the decarboxylation of ornithine to putrescine. Elevated polyamine levels can lead to down-regulation of ODC activity by enhancing the translation of antizyme mRNA, resulting in subsequent binding of antizyme to ODC monomers which targets ODC for proteolysis by the 26S proteasome. The crystal structure of ornithine decarboxylase from human liver has been determined to 2.1 A resolution by molecular replacement using truncated mouse ODC (Delta425-461) as the search model and refined to a crystallographic R-factor of 21.2% and an R-free value of 28.8%. The human ODC model includes several regions that are disordered in the mouse ODC crystal structure, including one of two C-terminal basal degradation elements that have been demonstrated to independently collaborate with antizyme binding to target ODC for degradation by the 26S proteasome. The crystal structure of human ODC suggests that the C terminus, which contains basal degradation elements necessary for antizyme-induced proteolysis, is not buried by the structural core of homodimeric ODC as previously proposed. Analysis of the solvent-accessible surface area, surface electrostatic potential, and the conservation of primary sequence between human ODC and Trypanosoma brucei ODC provides clues to the identity of potential protein-binding-determinants in the putative antizyme binding element in human ODC.


  • Organizational Affiliation

    Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
HUMAN ORNITHINE DECARBOXYLASE
A, B
421Homo sapiensMutation(s): 0 
EC: 4.1.1.17
UniProt & NIH Common Fund Data Resources
Find proteins for P11926 (Homo sapiens)
Explore P11926 
Go to UniProtKB:  P11926
PHAROS:  P11926
GTEx:  ENSG00000115758 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP11926
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
LLP
Query on LLP
A, B
L-PEPTIDE LINKINGC14 H22 N3 O7 PLYS
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.288 
  • R-Value Work: 0.212 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 61.68α = 90
b = 107.45β = 90
c = 139.71γ = 90
Software Package:
Software NamePurpose
AMoREphasing
REFMACrefinement
DENZOdata reduction
CCP4data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-10-25
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2018-01-31
    Changes: Experimental preparation